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Further Information

A number of organizations have been established to meet the needs of formal methods practitioners; for
example:

� Formal Methods Europe (FME) organizes a regular conference (e.g., Eriksson and Lindsay [2002]
and Wing et al. [1999]), formerly the VDM symposia, and other activities for users of various
formal methods.

� The British Computer Society Specialist Group on Formal Aspects of Computing Science (BCS-
FACS) organizes workshops and meetings on various aspects of formal methods, as well as a series
of Refinement Workshops (e.g., see Derrick et al. [2002]).

� The Z User Group (ZUG) has organized a regular international conference, historically known
as the Z User Meeting (ZUM), attracting users of the Z notation from all over the world. The
International B Conference Steering Committee (Association de Pilotage des Conférences B, APCB)
has organized a similar International B Conference series. Since 2000 these have been combined
into a single conference (e.g., see Bert et al. [2003]).

There are now a number of journals devoted specifically to formal methods. These include Formal
Methods in System Design and Formal Aspects of Computing. The FAC journal is published by Springer-
Verlag in association with BCS-FACS. Other European-based journals, such as The Computer Journal, IEE
Proceedings–Software (formerly the Software Engineering Journal), and Information and Software Technol-
ogy, publish articles on, or closely related to, formal methods, and they have run special issues on the
subject.

While there are no U.S.-based journals that deal specifically with formal methods, they regularly are
featured in popular periodicals such as IEEE Computer (e.g., Bowen and Hinchey [1995a], Hoare [1987],
Pfleeger and Hatton [1997], Saiedian [1996], and Wing [1990]) and IEEE Software (e.g., Bowen and
Hinchey [1995b], Hall [1990, 1996], Larsen et al. [1996], Luqi and Goguen [1997], and Palshikar [2001]),
as well as in journals such as the Annals of Software Engineering (e.g., Bjørner and Cuéllar [1999] and
Bjørner [2000]) IEEE Transactions on Software Engineering (e.g., Craigen et al. [1995], Easterbrook et al.
[1998], Feather [1998], Hansen et al. [1998], Heitmeyer et al. [1998], and Wing and Woodcock [2000]),
ACM Transactions on Software Engineering and Methodology [Crow and Di Vito 1998], and the Journal of
the ACM. A classic paper on the state of the art in formal methods has also appeared in the ACM Computing
Surveys [Clarke et al. 1996].

In addition to the conferences mentioned earlier, the IFIP (International Federation of Information
Processing) FORTE international conference concentrates on Formal Description Techniques (FDTs, e.g.,
see Peled and Vardi [2002]). The International Conference on Formal Engineering Methods series (ICFEM)
has also been established more recently (e.g., see George and Miao [2002]). A number of more specialist
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conferences on formal methods have been established. For example, the Integrated Formal Methods (IFM)
International Conference concentrates on the use of formal methods with other approaches (e.g., see Butler
et al. [2002]). The International Workshop on Formal Methods for Industrial Critical Systems (FMICS)
concentrates on industrial applications, especially using tools [Arts and Fokkink 2003].

Some more wide-ranging conferences give particular attention to formal methods; primary among these
are the ICSE (International Conference on Software Engineering) and ICECCS (International Conference
on Engineering of Complex Computer Systems) series of conferences. Other specialist conferences in the
safety-critical sector, such as SAFECOMP, and SSS (the Safety-critical Systems Symposium) also regularly
cover formal methods.

There have been some collections of case studies on formal methods with various aims and themes. For
some industrial applications, see Bowen and Hinchey [1995, 1999]. Solutions to a control specification
problem using a number of different formal approaches are presented in Abrial et al. [1996]. Frappier and
Habrias [2001] collected together a number of formal specification methods applied to an invoicing case
study where the presentations concentrate on the process of producing a formal description, including the
questions raised along the way.

A number of electronic forums are available as online newsgroups:

comp.specification.misc Formal specification
comp.specification.larch Larch
comp.specification.z Z notation

In addition, the following electronic mailing lists are available, among others:

formal-methods-request@cs.uidaho.edu Formal methods
procos-request@jiscmail.ac.uk Provably Correct Systems
vdm-forum-request@jiscmail.ac.uk VDM
zforum-request@comlab.ox.ac.uk Z (gatewayed to

comp.specification.z)

For up-to-date online information on formal methods in general, readers are directed to the following
World Wide Web URL (Uniform Resource Locator), which provides formal methods links as part of the
WWW Virtual Library:

http://vl.fmnet.info/
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107.1 Introduction

Verification and validation are terms that are sometimes used interchangeably. In Ghezzi et al. [1991],
verification is used to describe “all activities that are undertaken to ascertain that the software meets its
objectives,” and validation is not used at all. In Rushby [1993], specification validation is a two-component
process of seeking assurance that a specification means something (i.e., is consistent), and that it means
what is intended. We use verification to describe the process of demonstrating that a description of a
software system guarantees particular properties. General properties may be derived from the form of the
description (e.g., that functions are total, axioms are consistent, or variables are initialized before they are
referenced), and specific properties may be derived from the problem domain. The latter case involves the
comparison of two objects, a detailed description of a software system, and a more abstract description of
its intended properties.

In Section 107.2 we briefly describe validation and verification approaches. Section 107.3 and Section
107.4 deal with the verification of general and specific properties of specifications and programs, respec-
tively. We pay particular attention to opportunities for automating verification activities. We conclude
with a short discussion of the current verification practices.

107.2 Approaches to Verification

A variety of analysis activities may be used to verify software artifacts. In software inspections, teams of
software developers manually examine artifacts for defects. If a requirements document or a design is
written in a formal language, it may be possible to use it as a prototype for the system by simulating
the description for some test cases. General properties of software artifacts may be verified automatically
by static analysis of the artifact. State-exploration or theorem-proving techniques can be used to prove
specific properties of system descriptions.
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Inspections have proven to be an effective method for detecting software defects because they subject a
software artifact to the scrutiny of several people, some of whom did not participate in the artifact’s design.
Early requirements inspections catch errors before they propagate into designs and implementations,
making them less costly to repair. Fagan [1976] describes a six-stage inspection process:

� A determination is made that a software artifact is ready for an inspection, and an inspection team
is assembled.

� The artifact’s author provides reviewers an overview of the artifact.
� The team members individually study the artifact and record potential defects.
� A fixed-length inspection meeting is held. A moderator controls the discussion. The designer

presents and explains his work. Participants identify errors (but not solutions), which are recorded
by a secretary.

� The author fixes any errors.
� The moderator checks the new version of the artifact and determines if another inspection is

necessary.

Successful software inspections depend on the experience levels of the participants and the quality of
the artifacts. Requirements inspections should include participants who are future users of the system who
will help the software developers judge if the system will function as intended. Requirements notations
for embedded systems (e.g., the Software Cost Reduction (SCR) notation [Heitmeyer et al. 1995, Heniger
1980], the Requirements State Machine Language [Leveson et al. 1994], and Statecharts [Harel et al. 1990])
describe systems as sets of concurrently executing state machines responding to events in their environ-
ments. Finite state machines have precise meanings, but they are also easy to understand because they can
be described in tabular or graphic formats.

In order to maximize the benefits of inspections, participants may be given lists of questions about the
artifact that they must answer to ensure that they are sufficiently prepared for an inspection. For code
inspections, participants may receive checklists of potential errors that they are to check are not present
in the implementation.

Simulation of a software artifact helps software developers determine if the system behaves as expected
by producing results like those which will be produced by the eventual implementation of the system. Such
operational descriptions of systems give recipes for achieving desired results rather than just describing
properties of final results. Simulations of state-machine descriptions of systems are easy to perform;
however, simulating more detailed descriptions may require developers to sacrifice abstraction in favor
of executability. Being able to reverse a simulation may permit analysts to determine how potentially
hazardous states may be reached [Ratan et al. 1996].

If state machines manipulate few variables with simple data types (i.e., types with finite numbers of
values), properties such as deadlock freedom or mutual exclusion can be verified by using state-space
enumeration and exploration techniques. More detailed system descriptions with richer data types corre-
spond to infinite-state machines. While more specific properties can be stated and verified for infinite-state
machines, analysis techniques must either investigate approximations of the state space by folding states
together [Young and Taylor 1989] or reason with compact descriptions of the entire state space (i.e.,
assertions).

107.3 Verifying Specifications of Systems

With appropriate abstraction, synchronous communicating processes in distributed systems can be de-
scribed by sets of state-transition diagrams.

For example, Figure 107.1 describes a producer/consumer system with one producer and two consumer
processes. Consumer1 decides either to remain in an idle state (labeled i) or to move to a state in which it
requests output from the producer (labeled r1). When the producer process grants the consumer’s request
(by entering its state labeled p1), Consumer1 returns to its idle state. Consumer2 behaves in a similar
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FIGURE 107.1 A simple system with two consumers and one producer.

manner. Producer starts in an idle state (also labeled i), and moves into a production state (labeled p1 or
p2) in response to one of the consumer processes moving into its request state. After satisfying the request,
Producer returns to its idle state.

107.3.1 General Properties

We can derive general properties for the transitions in our model (e.g., that they are deterministic or total).
In Figure 107.1, unlabeled arcs are considered to be labeled “true.” That is, these transitions may always
be taken. Consumer1 has nondeterministic transitions because there are two arcs with the same transition
conditions (i.e., true) leaving its idle state and ending in different states. We might always want to ensure
that some transition is always enabled from each state. To check this property we compute the logical
operation for all the conditions on transitions leaving a state, and we check that its result is identical to
true. Consumer1’s idle state satisfies this property, but its request state does not, because the only transition
leaving this state occurs when p1 is true (i.e., when the Producer is in its state labeled p1). Although these
are very simple properties, they are valuable checks, particularly for large systems because they do not
require construction of the system’s state space.

107.3.2 Specific Properties

107.3.2.1 Reachability Analysis

Reachability analysis is performed to determine if potentially hazardous states (e.g., those representing
deadlock or mutual-exclusion failures) are reachable. To perform this analysis, a reachability graph rep-
resenting the global behavior of the system is constructed and exhaustively examined to determine if a
hazardous state is reachable.

Figure 107.2 represents the reachability graph for our producer/consumer system. Each state is la-
beled with three properties corresponding to properties of Consumer1, Consumer2, and Producer. In the
reachability graph’s initial state, labeled (i, i, i), each of the processes is in its idle state. Three transitions
leave this state, corresponding to either or both Consumer1 or Consumer2 issuing requests for output.
There are no transitions from the initial state to other states labeled either (i, i, p1) or (i, i, p2) because
the producer process waits for either of the consumers to issue a request before moving to a state in
which it produces output. Thus we could verify that objects are produced only in response to requests by
determining that no reachable states are labeled either (i, i, p1) or (i, i, p2).
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FIGURE 107.2 Reachability graph.

107.3.2.2 Model Checking

Although it is a useful verification technique, reachability analysis can be used only to verify properties
specified as propositional logic formulas quantified over all the states in the graph. We might also like to
assert properties about sequences of events, e.g., “if the consumer requests an output, the producer always
supplies one.” Pneuli [1981] showed how temporal logic can be used to state such properties and to reason
about concurrent systems.

A temporal logic is a propositional logic with additional temporal operators to express concepts such as
“always,” “eventually,” and “until” to assert that formulas are true in all or some future states. Two major
types of temporal logic are used in specifications: linear time logic and branching time logic. In linear time
logic, states have unique pasts and futures. To prove that a property is invariantly true, the property must
be proved over all possible execution paths of the system. In branching time temporal logics, states have
unique pasts but many possible futures. Thus, assertions may be made about properties holding on some
future executions or on all future executions. The latter assertions are invariants.

Computational tree logic (CTL) is a propositional branching time logic, whose operators permit explicit
quantification over all possible futures [Clarke et al. 1986]. The syntax for CTL formulas is summarized
below:

1. Every atomic proposition is a CTL formula.
2. If f and g are CTL formulas, then so are: ∼ f , f ∧ g , f ∨ g , f → g , AX f , E X f , A[ f Ug ],

E [ f Ug ], AF f , E F f , AG f , and E G f .

Note that temporal operators occur only in pairs in which a quantifier A (always) or E (exists) is followed
by F (future), G (global), U (until), or X (next). The logical operators have their usual meanings. The
meanings of the temporal operators are described below.

Concept Operator Meaning

Next AX f Formula f holds in every next state.
E X f Formula f holds in some next state.

Until A[ f Ug ] Along every path, there exists some future state s in which g is true, and
f is true in every state on the path until s .

E f Ug ] Along some path, there exists some future state s in which g is true, and
f is true in every state on the path until s .

Eventually AF f Along every path, f is true in some state.
Possibly E F f Along some path, f is true in some state.
Invariance AG f Along every path, f is true in every state.
Possible invariance EGf Along some path, f is true in every state.
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The specification “if the consumer requests an output, the producer always supplies one” can be written
as the CTL formula: AG((r 1 → AF (p1)) ∧ (r 2 → AF (p2)). That is, it is invariantly true that if
Consumer1 makes a request (represented by a state in which r 1 is true), eventually (i.e., along every path
starting at such states) the producer supplies an output for Consumer1 (a state is encountered in which p1
is true), and similarly for Consumer2.

If formula f is true in state s of model M, we write M, s |= f . A formula f is true for the model, if it is
true in the model’s start state, i.e., M, s0 |= f . When we are concerned with a single model, we abbreviate
M, s |= f as s |= f .

Introduced by Clarke and Emerson [Clarke et al. 1986] and by Quielle and Sifakis [1981], model checking
determines the value of a formula f for a particular model by building a reachability graph and computing
the set of states in which the formula is true, i.e., {s | s |= f }. For example, formula AF ( f ) represents
the set of states from which a state satisfying f can be reached in some number of state transitions along
all paths from the state.

f ∨ AX f ∨ AX(AX f ) ∨ . . .

where f is the set of states in which f is true, i.e., the set of states from which an f -state can be reached
in zero-state transitions. AX( f ) is the set of states all of whose transitions reach an f -state. AX(AX f ) is
the set of states from which any two state transitions reach an f -state, etc.

This set of states can be computed using the following least fixpoint computation:

Y = { };
Y' = {s | s |= f };
while ( Y �= Y' ) do {

Y = Y';
Y' = Y' ∪ {s | all successors of s are in Y};
}

By way of example, consider computing the set of states in which AF (p1) for the model in Figure 107.2.
The first iteration computes the set of states in which the formula p1 holds. This set, which is shaded in
Figure 107.3, corresponds to computing p1 ∨ AX false. During the second iteration, the predecessors of
the states already in the set are examined. The state labeled (r 1, i, i) is added to the set because the formula
is true in all of its successors. At this point, we have computed the set of states satisfying p1∨ AX(p1). The
remaining iterations are summarized in the following table.

Iteration State Set Remarks

1 {(r 1, i, p1), (r 1, r 2, p1)} The only states in which p1 is true.
2 {(r 1, i, p1), (r 1, r 2, p1), AX(p1) is true for the state labeled (r 1, i, i) since p1

(r 1, i, i)} is true in all its successors.
3 {(r 1, i, p1), (r 1, r 2, p1), AX(AX(p1)) is true for the state labeled (r 1, i, i) since

(r 1, i, i), (r 1, r 2, p2)} AX(p1) is true in all its successors.
4 {(r 1, i, p1), (r 1, r 2, p1), For the state labeled (r 1, r 2, i), AX(AX(AX(p1))) is true

(r 1, i, i), (r 1, r 2, p2), for one of its successors and AX(p1) is true for the other.
(r 1, r 2, i)}

5 {(r 1, i, p1), (r 1, r 2, p1), Each of the possible new predecessors, the states labeled
(r 1, i, i), (r 1, r 2, p2), state (i, i, i) and (i, r 2, i), have infinitely long paths
(r 1, r 2, i)} before reaching a state in which p1 is true.

Since no new states are added during the fifth iteration, we reach a fixpoint and the algorithm ter-
minates. Unfortunately, the set of states computed does not contain the start state, s0 (the state labeled
(i, i, i)), so s0 �|= AF (p1). However, the model checker gives a specific counter-example (i.e., the loop
(i, i, i), (i, r 2, i), (i, r 2, p2), . . .) showing why the formula is not satisified.
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FIGURE 107.3 Model checking s0 |= AF (p1).

To check AG((r 1 → AF (p1)) ∧ (r 2 → AF (p2)), we calculate the sets of states for which the
innermost, simplest formulas hold and work our way outward, calculating sets of states for more complex
formulas. Thus we might perform the following computations:

Step Formula Set of States

1 p1 {(r 1, i, p1), (r 1, r 2, p1)}
2 AF (p1) {(r 1, i, p1), (r 1, r 2, p1), (r 1, i, i),

(r 1, r 2, p2), (r 1, r 2, i)}
3 r 1 {(r 1, i, p1), (r 1, r 2, p1), (r 1, i, i),

(r 1, r 2, p2), (r 1, r 2, i)}
4 r 1 → AF (p1) All states
5 p2 {(i, r 2, p2), (r 1, r 2, p2)}
6 AF (p2) {(i, r 2, p2), (r 1, r 2, p2), (i, r 2, i),

(r 1, r 2, p1), (r 1, r 2, i)}
7 r 2 {(i, r 2, p2), (r 1, r 2, p2), (i, r 2, i),

(r 1, r 2, p1), (r 1, r 2, i)}
8 r 2 → AF (p2) All states
9 (r 1 → AF (p1)) ∧ (r 2 → AF (p2)) All states
10 AG((r 1 → AF (p1)) ∧ (r 2 → AF (p2)) All states

The formula r 1 → AF (p1) holds in all states because r 1 and AF (p1) are true in identical sets of states,
and because r 1 is false in all other states of the model. A similar analysis determines that r 2 → AF (p2)
also holds in all states, so the entire formula is true in all states satisfying the invariant operator AG .
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Automating model checking is quite easy, except that the entire state space of the model is constructed
before the fixpoint algorithms can be applied. However, model checking can also be done symbolically by
manipulating quantified Boolean formulas without constructing a model’s state space [McMillan 1993].
To perform symbolic model checking, sets of states and transition relations are represented by formulas,
and set operations are defined in terms of formula manipulations. A CTL formula f is evaluated for a
model by deriving a propositional logic expression that describes the set of states satisfying f for the model
and verifying that the interpretation of the model’s initial state satisfies the expression.

107.4 Verifying Programs

107.4.1 General Properties

Probably the best-known property of programs which is verified is that a program is type safe. In statically
typed languages, a data type is associated with a variable in a declaration. During its lifetime, the variable
may be assigned only values of the same type. The context of each appearance of a variable in a statement
implies a type, which can be checked against its declared type. Violations are reported as syntax errors.

Other important properties depend on data and control flow, e.g., each variable is assigned a value
before the value is used in an expression. Such properties are verified by static checkers, which analyze a
program’s syntax tree or control flow graph; no test data are used during these checks. Static checkers fold
different states together to make analysis tractable. For example, to check uninitialized variables, we may
care only if a variable has been assigned a value or not. Different integer values are all folded to a single
“defined” value to reduce the size of the state space. In the following program fragment, x will always have
a value when control reaches the final write statement, since either i ¡ j and x is assigned the value 1 or
i ¿ = j and x is assigned the value 2. However, a static checker keeping track of whether or not x had been
assigned a value on every potential path through the program would conclude that the write statement
might be executed with an undefined value.

Statement Defined Values

read(i); {i}
read(j); {i, j}
if (i < j)

x = 1; {i, j, x}
fi; {i, j} ∩ {i, j, x} = {i, j}
if (i >= j)

x = 2; {i, j, x}
fi; {i, j} ∩ {i, j, x} = {i, j}
write(x) {i, j}

In each if statement, x is defined on only one path through the statement. Thus, the static checker intersects
the sets of variables defined on each of its paths to determine the set of variables which are certain to have
values. This approximation of the state space is called conservative or pessimistically inaccurate because it
preserves states which potentially contain errors. In this case, it preserved a state in which x is undefined
which can be reached only on an infeasible path (i.e., when i≥ j ∧ i ¡ j). Programmers using static
checkers must examine error messages to determine if an anomaly exists before trying to repair their
programs.

A syntax-directed definition can be used to describe the analysis needed to verify this property. A syntax-
directed definition extends a context-free grammar by associating attributes with grammar symbols. The
value of an attribute in a syntax tree is defined by rules associated with each production used at the
particular node of the tree. Attributes can be values of any type. In this example, we use two sets of
identifiers: In (representing the set of identifiers defined on all paths leading to the current statement) and
Out (representing the set of identifiers defined on all paths after executing the current statement). The
syntax-directed definition for the simple language is shown below.
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Production Attributes

P ::= SL SL.In = ∅
SL1 ::= S ';' SL2 S.In = SL1.In

SL2.In = S.Out
SL1.Out = SL2.Out

SL ::= � SL.Out = SL.In
S ::= id '=' Exp S.Out = {id} ∪ S.In
S ::= 'if' Exp 'then' SL 'fi' S.In = S.In

S.Out = S.In
S ::= 'if' Exp 'then' SL1 'else' SL2 'fi' SL1.In = S.In

SL2.In = S.In
S.Out = SL1.Out ∩ SL2.Out

S ::= 'while' Exp 'do' SL 'od' SL.In = S.In
S.Out = S.In

S ::= 'read' '('id')' S.Out = {id} ∪ S.In
S ::= 'write' '('id')' S.Out = S.In

The production P ::= SL initializes SL’s In attribute to the empty set. When identical nonterminals
appear in a production, the instances are numbered so their attributes can be distinguished. For example,
the production SL ::= S ’;’ SL is rewritten as SL1 ::= S ’;’ SL2. The set of defined variables available to
S is the same as that available to SL1. However, the defined variables for SL2 are those from S.Out. Each
S-production copies its incoming set of definitions (In) to its Out attribute and adds any new definitions
made in the statement. Thus, for example, the statement read(i) adds the variable i to the empty set of
definitions that reaches it. The set of outgoing definitions from the if statement if i < j then x =
1 fi; is {i, j}, since the statement contains an execution path on which x is not defined.

Figure 107.4 shows the attributes evaluated on the syntax tree corresponding to our sample program.
Since the write statement’s In attribute contains only {i, j}, a static checker would say that definition-
before-use property was violated for x.

Abstract interpretation [Cousot and Cousot 1976] is a method for computing approximate semantics
of programs in order to provide safe answers to questions about their run-time behaviors. In an abstract
interpretation of a program, “abstract” values are associated with program variables instead of the actual
execution values, and a programming language’s operators are redefined to manipulate the abstract values.
An abstract interpretation of a program computes a fixpoint approximation of the abstract program state
at different points in the program, and properties of the program are verified with respect to these states.

Consider the following example [Cousot and Cousot 1977], which searches a list for a particular value.
One property we would like to ensure is that the value of p is never NULL when it is dereferenced on lines
3 or 4.

1. p = L; b = TRUE;
2. while (p =/ NULL & b)
3. if (p → v == n) then b = FALSE;
4. else p = p → next;

The pointer variable p may have one of four possible values: undefined (⊥), NULL, nonNULL, or NULL

or nonNULL (�). These values form the complete lattice in Figure 107.5. Initially, a pointer variable has
the value ⊥. Pointer variables may be assigned on of the following values: NULL, nonNULL (i.e., the result
produced by a new operation), or the value of another pointer variable. Dereferencing a pointer whose
value is nonNULL yields the value �, and dereferencing a pointer with any other value yields ⊥.

Each node in a program’s control flow graph defines an output state in terms of its input state. Assignment
nodes’ output states are identical to their input states except for the value of the variable on the left side of
the assignment operation. The output state for a join node is the union of the respective values in its input
states. The output state corresponding to the true outcome of a decision node labeled p! = NULL is
calculated by creating a new state which is identical to the input state except that p has value nonNULL and
intersecting the new state with the input state. The output state corresponding to the false outcome of the
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FIGURE 107.4 Attributes evaluated on a syntax tree.

FIGURE 107.5 Lattice of pointer values.

decision node is calculated in a similar manner except that p has value NULL in the newly created state.
These computations are depicted in Figure 107.6, and the definitions for ∪ and ∩ are given in the following
tables. The Xs in the table for ∩ represent error entries corresponding to infeasible paths.

x ∪ y x ∩ y
⊥ NULL nonNULL � ⊥ NULL nonNULL �

⊥ ⊥ NULL nonNULL � ⊥ ⊥ ⊥ ⊥
NULL NULL NULL � � ⊥ NULL X NULL

nonNULL nonNULL � nonNULL � ⊥ X nonNULL nonNULL
� � � � � ⊥ NULL nonNULL �

Since pointer variables have a finite number of abstract values, system states do not have an infinite
increasing chain of values.
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FIGURE 107.6 Computing state values for join and decision nodes.

p = p->next

p = L
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1.

2.

{ p = ,  L = }},  L = { p = nonNULL

},  L = { p = nonNULL

{ p = ,  L = }

p->v == n

},  L = { p = NULL

T

F

T F

b = FALSE

p  NULL/=

FIGURE 107.7 Calculated state values for sample program.

Figure 107.7 shows the control flow graph for the sample program with edges labeled with computed
state values for the pointer variables p and L. All edges are initially labeled {p = ⊥, L = ⊥} except for
the first arc, where we assume L has value �. The first time the arc leaving the while statement’s join node
is reached, the state value is the set labeled “1” in Figure 107.7. This set of values results from the union of
the output state of the assignment statement p = L and the default program state corresponding to the
output state of the if statement’s join node.

while join {p = �, L = �} ∩ {p = ⊥, L = ⊥} = {p = �, L = �}
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Interpreting the while statement’s decision node creates two states:

Test succeeds{p =�, L =�} ∩ {p = nonNULL, L =�} = {p = nonNULL, L = �}
Test fails {p =�, L =�} ∩ {p = NULL, L =�} = {p = NULL, L = �}

Since p has value nonNULL before being dereferenced in the expression p → next, the dereference
operation yields the value � which is bound to p in the assignment statement. At the if statement’s join
node, the union of two input states creates the output value.

if join {p = nonNULL, L = �} ∩ {p = �, L = �} = {p = �, L = �}

The output statement of the if statement’s join node is unioned with the output state of the assignment
p = L, yielding the state labeled “2” at the while statement’s join node. Since this state is identical to the
previous state at this point, we have reached a fixpoint and the computation ceases. We can now check that
both pointer dereferences (i.e., p→v and p→next) occurs in input state where p has the value nonNULL,
so we know no NULL-value pointers are dereferenced.

Static checkers have difficulty dealing with pointer variables. General properties involving pointers are
more easily verified at run time. Two such properties are freedom from memory access errors or memory
leaks. A memory access error occurs when a reference containing a valid address for a block of storage
which has already been freed is used to read from or write to the address. A memory leak occurs when
storage is allocated but not freed before the last reference to it is lost. The following program illustrates
these problems.

void leak(){
node* q = new node; // the storage referenced by q is a

memory leak
}
void remove (node* p){

delete p; //p is a reference to freed memory
}
void main(){

node* p = new node;
p→data = 3;
remove(p);
p→data = 4;
leak();

}

In procedure remove, the storage referenced by p is freed, but p retains its value. When remove returns,
p is dereferenced to store a value in one of the freed memory locations. When procedure leak is called,
q is assigned the address of newly allocated storage. When leak returns, q’s storage is reclaimed but the
storage it referenced remains allocated. Over time, the build-up of state caused by memory leaks can lead
to program crashes.

Tools (e.g., Purify [Hasting and Joyce 1992]) redefine memory management routines to record infor-
mation needed to check these properities. A table corresponding with a single bit for each byte of memory
can be used to determine if a memory location is allocated or not. Accesses to unallocated memory are
reported. Standard mark and sweep algorithms for garbage collection are modified to detect memory
leaks. The mark phase recursively follows pointers from the stack and marks referenced heap locations.
This phase is conservative because pointers cannot be distinguished from other data, and an integer with
a value that appears to be a valid address will cause freed data to be erroneously marked. The sweep phase
steps through the heap and reports blocks that are no longer referenced. By labeling each block with the
return address of the the functions on the call stack, useful diagnostics about offending statments can be
printed.
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107.4.2 Specific Properties

Floyd [Floyd 1967] introduced assertional reasoning for sequential programs represented as flowcharts.
Hoare formulated this as a logic for program test. A Hoare-triple has the form {P }S{Q}, where P and Q
are assertions about program states, and S is a statement. This expression is interpreted as “If P , called the
precondition, is true before executing S and S terminates normally, then Q, called the postcondition, will
be true.” This concept is called “partial” correctness because S’s termination is not guaranteed.

107.4.2.1 Axioms and Rules of Inference

The assignment axiom schema:

Assignment:
{

P x
y

}
x = y{P }

defines the effect of the assignment statement on postcondition P . That is, if we want P to be true after
executing the assignment statement x = y, then P x

y , P with all free (i.e., unquantified) occurrences of x
replaced by y must be true before executing the assignment. The assignment axiom is a schema that must
be instantiated for individual assignment statements. For example, {y − 1 ≥ 0} x = y − 1 {x ≥ 0}. The
assignment axiom allows us to calculate an assertion which describes the set of input states for which the
assignment statement will produce the desired result if it terminates. Thus, if we want x ≥ 0 to hold in all
program states after x = y − 1 terminates, y ≥ 1 must hold in all states before this statement executes.

Results for verifying two statements are composed using the following rule of inference:

Composition:
{P }S1{Q}, {Q}S2{R}

{P }S1; S2{R}
If the formula above the line (the antecedent) is true, then we may conclude that the statement below the
line (the consequent) is true. The rule of composition allows us to combine the results of executing two
statements to conclude that if P is true and the execution of S1 followed by S2 terminates normally, then
R will be true. To reach this conclusion, the antecedent requires us to show that the postcondition of S1 is
the same as the precondition of S2.

The postcondition of one statement is rarely identical to the precondition of another state, so we have
rules of consequence to weaken the postcondition or strengthen the precondition of a statement. The rules
of consequence build on predicate logic rules of inference.

Rules of consequence:
{P }S{R}, R → Q P → R, {R}S{Q}

{P }S{Q} {P }S{Q}
Each programming language statement has a separate rule of inference.

If statement1 :
{P ∧ B} S {Q}, P ∧ ∼ B → Q

{P } if B then S{Q}

If statement2 :
{P ∧ B} S1 {Q}, {P ∧ ∼ B} S2 {Q}

{P } if B then S1 else S2 {Q}

While statement:
{P ∧ B} S {P }

{P } while B do S {P ∧ ∼ B}
A rule of inference captures the statement’s semantics. For example, to conclude the consequent of
If statement2, we have to show that for each execution path through the statement that if we start ex-
ecution with assertion P being true and execution of the path terminates normally, then assertion Q will
be true. On one path, we assume P and B are true before S1 is executed, and on the other path we assume P
and ∼ B are true before S2 is executed. Each of these paths appears in the left half of Figure 107.8. Defining
a rule for the while statement is more difficult because the number of paths to verify is potentially infinite.
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FIGURE 107.8 Flow of control for if and while statements.

The while statement rule of inference resorts to induction to solve this problem. We assume a property P
(called the invariant) is true when the while statement begins execution and show that it is still true when
S terminates normally. We conclude that P is true after zero or more executions of S, and that B must be
false when the statement terminates.

107.4.2.2 Verifying a Small Program

Consider the following example of a Hoare-style proof of partial correctness of a program which uses
repeated subtractions to compute the remainder (r) and quotient (q) obtained be dividing the integer x

by the integer y:

{x ≥ 0 ∧ y > 0}
q = 0;
r = x;
while y ≤ r do {

r = r - y;
q = q + 1;
}

{x = r + y* q ∧ 0 ≤ r ∧ r < y}

The postcondition characterizes the desired relationship between values in order for r and q to represent
the remainder and quotient, respectively.

For the postcondition to be true, it must be so as a result of application of the while rule of inference.
To apply the rule, we must identify the loop invariant (P ) in the rule’s antecedent. One way to do this is to
“remove” ∼ B from the postcondition and check if the remainder of the postcondition is invariant. Since
B is y ≤ r, ∼ B is y ¿ r or r ¡ y, and P is x = r + y × q ∧ 0 ≤ r. Hence the inference rule which
could be applied would be:

{x = r + y × q ∧ 0 ≤ r ∧ r ≥ y}
r = r - y; q = q + 1

{x = r + y × q ∧ 0 ≤ r}

{x = r + y × q ∧ 0 ≤ r }
while r ≥ y do {r = r - y ; q = q + 1}

{x = r + y × q ∧ 0 ≤ r ∧ r < y}
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To establish the antecedent to the while rule, we use the assignment axiom for each assignment statement
to calculate the property which must be true before each is executed.

{x = r + y × (q + 1) ∧ 0 ≤ r} q = q + 1 {x = r + y × q ∧ 0 ≤ r}
{x = (r - y) + y × (q + 1) ∧ 0 ≤ r - y} r = r - y {x = r + y × (q + 1) ∧ 0 ≤ r}

The precondition of the first assignment statement can be simplified from (r - y) + y× (q + 1) to
r - y × q. The rule of inference for composition can be applied to compose the results of the assignment
axioms:

{x = (r - y) + y × (q + 1) ∧ 0 ≤ r - y} r = r - y {x = r + y × (q + 1) ∧ 0 ≤ r},
{x = r + y × (q + 1) ∧ 0 ≤ r} q = q + 1 {x = r + y × q ∧ 0 ≤ r}

{x = r - y × q ∧ 0 ≤ r - y} r = r - y; q = q + 1 {x = r + y × q ∧ 0 ≤ r}

Now, using a rule of consequence, we can show that the invariant is maintained by demonstrating that
P ∧ B implies the precondition of the consequent of the composition rule.

(x = r + y × q ∧ 0 ≤ r ∧ r ≥ y) → (x = r - y × q ∧ 0 ≤ r - y),
{x = r - y × q ∧ 0 ≤ r - y} r = r - y; q = q + 1 {x = r + y × q ∧ 0 ≤ r}

{x = r + y × q ∧ 0 ≤ r ∧ r ≥ y} r = r - y; q = q + 1 {x = r + y × q ∧ 0 ≤ r}

We observe that 0 ≤ r - y is true because r ≥ y. This establishes the antecedent of the while rule of
inference.

Now we must determine whether or not the initialization steps in the program make the precondition
of the while statement’s consequent true. We use the assignment axiom twice to calculate the the property
which must be true before each is executed.

{x = x + y × q ∧ 0 ≤ x} r = x {x = r + y × q ∧ 0 ≤ r}
{x = x + y × 0 ∧ 0 ≤ x} q = 0 {x = x + y × q ∧ 0 ≤ x}

After simplifying x = x + y × 0 to true, we use the rule of inference for composition first to compose
the results of the two assignment axioms:

{0 ≤ x} q = 0 {x = x + y × q ∧ 0 ≤ x},
{x = x + y × q ∧ 0 ≤ x} r = x {x = r + y × q ∧ 0 ≤ r}

{0 ≤ x} q = 0; r = x {x = r + y × q ∧ 0 ≤ r}

and then to compose this result with that of the while rule of inference:

{0 ≤ x} q = 0; r = x {x = r + y × q ∧ 0 ≤ r},
{x = r + y × q ∧ 0 ≤ r} while r ≥ y do { r = r - y; q = q + 1 } {x = r + y × q ∧ 0 ≤ r ∧ r < y}

{0 ≤ x} q = 0; r = x; while r ≥ y do { r = r - y; q = q + 1 } {x = r + y × q ∧ 0 ≤ r ∧ r < y}

We use a rule of consequence to show that the program’s precondition is stronger than the property we have
calculated and must be true before executing the program in order to make the program’s postcondition
true.

(x ≥ 0 ∧ y > 0) → 0 ≤ x,
{0 ≤ x}

q = 0; r = x; while r ≥ y do {r = r - y; q = q + 1}
{x = r + y × q ∧ 0 ≤ r ∧ r < y}

{x ≥ 0 ∧ y > 0}
q = 0; r = x; while r ≥ y do {r = r - y; q = q + 1}

{x = r + y × q ∧ 0 ≤ r ∧ r < y}
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107.4.2.3 Program Termination

The stated precondition for the program (x ≥ 0 ∧ y ¿ 0) is more restrictive (i.e., describes a smaller
set of program states) than the precondition (x ≥ 0) we calculated was necessary for the program to
execute and produce a set of states satisfying its postcondition. The difference between these assertions
highlights the difference between partial and total program correctness. For states satisfying the calculated
precondition but not the original precondition (i.e., those in which x ≥ 0 ∧ y ≤ 0), the program would
produce the desired result if it halted, but it does not. When values of y which are less than or equal to 0
are subtracted from r, the difference between r and y does not decrease, so the while statement fails to
terminate.

To demonstrate that the while statement “while B do S” terminates, we show that B must eventually
evaluate to false. To do this, we derive an expression from B whose value is bounded below by 0, and we
show that on each path through S the value of the expression decreases. Since it has a lower bound, the
expression cannot decrease infinitely, so the while statement must terminate. In our example program,
we want to show that r ≥ y cannot remain true indefinitely. We can form a termination test expression
by subtracting y from both sides of the while statement predicate to obtain r - y ≥ 0. There is only a
single path in S on which r is decremented by y. As long as y is positive, r - y will decrease and the while
statement will terminate. Thus, we add the assertion y ¿ 0 to the calculated assertion x ≥ 0 to guarantee
total correctness.

107.4.2.4 Advanced Language Features

107.4.2.4.1 Arrays
Proofs of programs manipulating scalar variables are relatively straightforward. However, to prove realistic
programs, axioms and rules of inference must be devised for all language features. In this section, we discuss
arrays and procedure calls, two features that complicate verifications.

Using the axiom of assignment to reason about assignments to variables which are array elements can
lead to unsound reasoning. The following code fragment assigns the value 4 to a[i] and a[j] because the first
assignment statement ensures that i and j have identical values. i = j; a[i] = 3; a[j] = 4;
However, using the axioms and rules of inference introduced thus far, we can prove that no matter in
what state the program begins execution (i.e., the precondition is true) this code fragment finishes exe-
cution with the postcondition a[i] ¡ a[j]. {true} i = j; {3 < 4} a[i] = 3; {a[i] < 4}
a[j] = 4; {a[i] < a[j]}.

To avoid this problem, we need to consider an array as a function which maps its indices to values, and
an assignment statement as an operation which assigns a new function to the array. For example, a[i] = 3

assigns a new function to the array a which is identical to the old function except that it maps i to 3. That
is,

�(a,i,x)[j] =

{
x when i = j

a[j] when i =/ j

Using this definition, we can work out the value of subscripted array expressions, e.g., �(�(a, 3, x), 4, y)

[3] = �(a, 3, x) [3] = x. Our new assignment axiom schema is

Array assignment:
{

P a
�(a ,i,x)

}
a[i] = x{P }

With this new axiom and the previous rules of inference, we can reason safely about programs which
alter arrays. {�(a,j,4)[i] < �(a,j,4)[j]} a[j] = 4; {a[i] < a[j]} We can sim-
plify �(a, j, 4)[j] to 4 using the definition of � and continue our verification. {�(�(a,i,3),j,
4)[i] < 4} a[i] = 3; {�(a,j,4)[i] < 4} {�(�(a,j,3),j,4)[j] < 4} i = j;
{�(�(a,i,3),j,4)[i] < 4} Simplifying �(�(a, j, 3), j, 4)[j] yields the value 4. Thus there are
no states in which the program begins execution (i.e., the precondition 4 < 4 is false) for which this code
fragment finishes execution with the postcondition a[i] ¡ a[j].
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107.4.2.4.2 Procedure Invocations
In verifications involving procedures, our goal is to verify a procedure’s body once, and then use this result
at each point at which the procedure is invoked. We have two new rules of inference for procedures: one
rule handles the substitution of actual parameters for formal parameters, and the other rule relates the
procedure’s precondition and postcondition to the assertion which must be true after the procedure’s
invocation [Hoare 1971]. If all our parameters are passed by reference, we can use the following simplified
rule of substitution:

Substitution:
{R}p( f ){S}{

Rk
k′ x

a

}
p(a)

{
Sk

k′ x
a

}

where f and a are the lists of formal and actual parameters, respectively. The procedure’s body may not
reference nonlocal variables, and each variable in a must be unique. Symbols which are free in R and S but
do not appear in the actual parameter list (i.e., k) are renamed. The rule’s antecedent requires verification
of the procedure’s body once using the names of formal parameters.

A procedure’s postcondition is rarely identical to the assertion which must be true after the call, since
the procedure may be called from many different locations. Thus we need a rule similar to the rule of
consequence to adapt the results of the procedure body to the different assertions needed to hold after
invocations.

Adaptation:
{R}p(a){S}

{∃k (R ∧ ∀a(S → T))}p(a){T}

In this rule, the names of actual parameters have a different meaning in R than they do in S and T . The
name of a parameter in R represents a value before the call, but the same name in S or T represents a
value after the call. These values may be different because parameters are transmitted by reference and may
be changed by the procedure’s body. Names of actual parameters are free variables in R and universally
quantified variables in S and T . Thus even if name appears in R and S or T , its meaning is different. Initial
values of variables often appear in a procedure’s precondition or postcondition, but not in a or T . These
names are existentially quantified because some such value must exist.

By way of example, assume we have verified the body of a procedure swap(x, y) whose precondition is
{x = x’ ∧ y = y’}} and whose postcondition is {x = y’ ∧ y = x’}}, and we want to verify the following
code fragment. {true} a = 1; b = 2; swap(a, b); {a = 2 ∧ b = 1} Having verified
the body of swap, we can use the rule of substitution to replace swap’s formal parameters with the actual
parameters of the call.

{x = x' ∧ y = y'} swap(x, y) {x = y' ∧ y = x'}

{a = x' ∧ b = y'} swap(a, b) {a = y' ∧ b = x'}

Substitution’s consequent is the antecedent of the rule of adaptation. When we apply adaptation we need
to existentially quantify x’ and y’(the initial values of a and b in the precondition), and universally quantify
a and b (the values of the parameters after the call).

{a = x' ∧ b = y'} swap(a, b) {a = y' ∧ b = x'}

{∃, x', y' (a = x' ∧ b = y' ∧ (∀ a, b, (a = y' ∧ b = x') →
(a = 2 ∧ b = 1))}

swap(a, b) {a = 2 ∧ b = 1}
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We can pick values for x’ and y’ (e.g., x’ = 1 and y’ = 2) to simplify the precondition of the adaptation
rule’s consequent.

(a = 1 ∧ b = 2 ∧ (∀ a,b, (a = 2 ∧ b = 1) → (a = 2 ∧ b = 1)))

Clearly, this precondition is established by the sequence of assignment statements.

107.4.2.4.3 User-Defined Data Types
Modern programming languages provide special constructs such as classes to implement user-defined
data types. These constructs are specifically designed to hide the representation of a value of the type from
users who manipulate values of the type only through operations provided by the special constructs. Hoare
[Hoare 1972] divided the verification of such programs into two parts.

1. Each operation’s preconditions and postconditions are specified using values and operations from
well-defined mathematical domains (e.g., sets or lists), and user-level code is verified with these
assertions.

2. A representation mapping is defined to relate implementation-level values (e.g., arrays or linked
representations) to user-level values. User-level variables in preconditions and postconditions are
replaced by the corresponding mapped implementation-level variables, and the implementations
of the operations are verified using the techniques described in the previous section.

Guttag et al. [1985] replaced model-oriented, user-level specifications with property-oriented specifica-
tions. Property-oriented specifications describe aspects of values in terms of properties they possess. In
this approach, called algebraic specification, properties of operations of user-defined types are defined in
terms of how they interact with each other.

Algebraic Specifications. Algebraic specifications have syntactic and semantic parts. The syntactic de-
scription, often referred to as the type’s signature, describes the domains and ranges of the type’s operations.
For example, some operations on objects of type “stack of integer” are listed below.

estack → Stack
push Stack × integer → Stack
pop Stack → Stack
top Stack → natural
empty Stack → Boolean
depth Stack → natural
= Stack × Stack → Boolean

Axioms describe the meanings of operators in terms of how they interact with one another. Axioms
appear as equations; each left side contains a composition of operators manipulating implicitly universally
quantified variables, and each right side contains a description of how the composition behaves in terms
of the type’s operators and simple “if-then-else” expressions. The axioms for the operations of type Stack
appear below.

1. pop(estack) = estack
2. pop(push(S, X)) = S
3. top(estack) = 0
4. top(push(S, X)) = X
5. empty(estack) = true
6. empty(push(S, X)) = false
7. depth(estack) = 0
8. depth(push(S, X)) = depth(S) + 1
9. T = estack = depth(T) = 0
10. T = push(S, X) = top(T) = X ∧ pop(T) = S

where S and T are objects of types Stack, and X is an integer. Axiom 2 describes the value computed
by pushing an arbitrary value on Stack S followed by popping the resulting Stack object as being equal
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to the original value of S. Pushing a value on a Stack object increases the depth of the object by one
according to Axiom 8. Axiom 10 asserts that Stacks T and push(S, X) are equal if their respective top
values (top(T) and X) and remaining values (pop(T) and S) are equal.

We can use equational reasoning, replacing a term with an equal term, to validate that the axioms behave
as intended. For example, we could check that popping a nonempty Stack object decreases its depth by
picking a particular Stack object (e.g., push(estack, X)) and reasoning equationally as follows:

Term Axiom

(∼(push(estack, X) = estack)→(depth(pop(push(estack, X)))<depth(push(estack, X))))

(∼(depth(push(estack, X)) = 0)→(depth(pop(push(estack, X)))<depth(push(estack, X)))) 9

(∼(depth(estack) + 1 = 0)→(depth(pop(push(estack, X)))<depth(push(estack, X)))) 8

(∼(0 + 1 = 0)→(depth(pop(push(estack, X)))<depth(push(estack, X)))) 7

true→(depth(pop(push(estack, X)))<depth(push(estack, X)))) 1=/0

true→(depth(estack)<depth(push(estack, X)))) 2

true→(0<depth(push(estack, X)))) 7

true→(0<depth(estack)+1) 8

true→(0<0 + 1) 0<1

true→true

Axioms are inconsistent when an operation is overspecified. This occurs when two rules can be used
to rewrite the same combination of arguments to different values. For example, if we added the following
axiom:
top(pop(push(S, X))) = X to our previous axioms we would be able to rewrite the term

top(pop(push(estack, 5))) to two different values.

top(pop(push(estack, 5))) ⇒ 5 New axiom
top(pop(push(estack, 5))) ⇒ top(estack) ⇒ 0 Axiom 2 then 3

Overspecification can be detected by a superposition algorithm [Knuth and Bendix 1970] which uses
unification to detect overlapping axioms which produce different results.

Axioms are incomplete when an operation is underspecified (i.e., when no rule can be used to rewrite
some combination of arguments). The specification of a type is sufficiently complete, if it assigns a value
to each term of the type [Guttag and Horning 1978]. All Stack values can be built by a finite number
of compositions of push operations on estack values, since any stack either is empty or is obtainable by
pushing some element on some other stack. Operations estack and push are called constructors, and the
remaining operations are called defined operations.

An algorithm exists for detecting underspecified operations [Huet and Hullot 1982]. The variables
on the left side of each axiom must be unique, and a recursive test ensuring that all permutations of
constructors may appear in the operation’s argument positions must succeed. This test would succeed for
Stack’s pop operation for any of the following left sides of axioms:

Left sides Reason for success

{pop(estack), pop(push(S, X))} All constructors
{pop(estack), pop(S)} S represents estack and push(S', X)
{pop(S), pop(push(S, X))} S represents estack and push(S', X)
{pop(S)} S represents estack and push(S', X)

Of course, it is much easier to write the right sides of axioms for some of these sets of left sides than for
others.

The algorithm of Huet and Hullot works as follows. A set of n-tuples is formed from the n arguments
which appear in each of the operation’s axioms. The set of arguments in the tuple’s first positions is
constructed. The test fails if the set does contain either a variable or an instance of each constructor.
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FIGURE 107.9 Verifying that pop’s axioms are not underspecified.

The n-tuple set is divided into subsets on the basis of which constructor appeared in the first position.
Each of these sets is augmented by the set n-tuples with variables in the first position, since the variable
could represent an instance of the particular constructor. Each tuple in the set for a constructor with p
arguments is transformed as follows. If the first element of the tuple is the constructor, it is replaced by its
p arguments forming a new n − 1 + p-tuple. If the first element of the tuple is a variable, it is replaced
by p fresh variables forming a new n − 1 + p-tuple. The test is repeated on each new tuple subset, and
succeeds for tuples of length zero.

Figure 107.9 shows the results of applying the test to the Stack axioms which define pop. The ini-
tial set of tuples is {¡estack¿, ¡push(S, X)¿}. The set of arguments in the first positions of these
tuples contains an instance of each constructor, so we continue by dividing the set and construct-
ing new tuples. The set of new tuples formed from the tuples with estack in the first position is {¡

¿}, while the set formed from tuples with push in the first position is {¡S, X¿}. The test succeeds
for the zero-length tuple. For {¡S, X¿}, the set of arguments in the first position contains a variable,
so we form the new set of tuples {¡X¿}. Repeating the step once more leads to a set of zero-length
tuples. If one of push’s arguments had not been a variable (e.g., push(estack, X)), the algorithm
would fail because we could not determine a meaning for some terms (e.g., pop(push(push(estack),

1), 2)).
To validate sets of axioms, we change each equation of the form t1 = t2 into a rewrite rule of the form

t1 ⇒ t2. A rewrite rule allows the replacement of an instance of t1 with the corresponding instance of t2, but
it forbids replacement in the opposite direction. Orienting equations transforms an algebraic specification
into a term rewriting system [Dershowitz and Jouannaud 1990] that supports automated verification and
validation.

Two crucial properties must hold when equations are oriented. Two terms provably equal by equational
reasoning should have a common third term to which both can be rewritten. This property is referred
to as confluence or Church–Rosser. Also, there should be a finite number of rewriting steps that can be
applied to a term. This property is referred to as termination or Noetherianity. To ensure the conflu-
ence of a constructor-based specification it is sufficient to avoid overspecification. To ensure sufficient
completeness it is necessary, but not sufficient, to avoid underspecification. Although underspecification
and overspecification can be checked, the termination of a rewrite system is undecidable [Dershowitz
1987].

Term rewriting allows us to verify that a property is true for all values of a type rather than just testing
that the property holds for particular values. However, when we try to verify that popping a nonempty
Stack object decreases its depth for an arbitrary Stack value S0, we quickly reach a point where no more
rewriting can be performed.

(∼(S0 = estack) → (depth(pop(S0)) < depth(S0))) = true
(∼(depth(S0) = 0)) → (depth(pop(S0)) < depth(S0))) = true
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Equations that cannot be proved by just rewriting may be proved by structural induction [Burstall 1969]
or data type induction [Guttag et al. 1978]. Using such techniques, inductive variables are replaced by
terms derived from their type’s constructors and inductive hypotheses are constructed. If F is a for-
mula to be proved and v is the inductive variable, then for every constructor c(s1, . . . , sn) we prove
F [c(v1, . . . , vn)/v], where each vi is a distinct Skolem constant. If si = s , then F [vi /v] is an inductive
hypothesis for the proof. Our sample proof proceeds by induction on S0 with two cases: one with S0

replaced by estack with no new inductive hypothesis since estack has no arguments, and another with S0

replaced by push(S1, X) in which we assume the original formula with S0 replaced by S1 as the inductive
hypothesis.

imply(negate(depth(S0) = 0))→(depth(pop(S0)) < depth(S0))) = true

Case S0 = estack

(∼((depth(estack) = 0))→(depth(pop(estack)) < depth(estack))) = true
(∼(0 = 0) → (depth(pop(estack)) < depth(estack))) = true
(∼(true) → (depth(pop(estack)) < depth(estack))) = true
(false → (depth(pop(estack)) < depth(estack))) = true
(false → (depth(estack) < depth(estack))) = true
(false → 0 < 0) = true
(false → false) = true
true = true

Case S0 = push(S1, X)
Inductive hypothesis:

(∼(depth(S1) = 0)→(depth(pop(S1)) < depth(S1))) = true

(∼((depth(push(S1, X)) = 0))→(depth(pop(push(S1, X)))
< depth(push(S1, X)))) = true

(∼((succ(depth(S1)) = 0))→(depth(pop(push(S1, X)))
< depth(push(S1, X)))) = true

(∼(false) → (depth(pop(push(S1, X))) < depth(push(S1, X)))) = true
(true → (depth(pop(push(S1, X))) < depth(push(S1, X)))) = true
(true → (depth(S1) < succ(depth(S1)))) = true
(true → true) = true
true = true

107.4.2.4.4 Verifying User-Level Programs
Having defined type Stack, we can use the operations of type Stack in the preconditions and post-
conditions of the procedures of the implementation. In the example below, identifier s represents each
operation’s implicit first formal parameter of type Stack. The specification of Push states that if the value
of s before invocation is the term s’ and Push terminates normally, then the value of s after Push will be
equal to the term push(s’, x)

class Stack {
private:

int* v;
int top;

public:
void Push(int x) {

/* pre: s = s'; post: s = push(s', x) */
...

void Pop( );
/* pre: ∼empty(s') ∧ s = s'; post: s = pop(s') */
...

};
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Using the rules of inference for procedure call, we can verify the following code fragment using the
stated preconditions and postconditions.

{s = A} s.Push(x); s.Pop(); {s = A}

First we use the rule of adaptation, to relate pop’s precondition and postcondition to the program’s
postcondition.

{∼empty(s') ∧ s = s'} pop(s) {s = pop(s')}

{∃ s' (∼empty(s') ∧ s = s' ∧ (∀ s, s = pop(s')→ s = A))} pop(s) {s = A}

Picking s’ = push(A,x) permits us to begin simplifying the precondition of the adaptation rule’s conse-
quent.

Term Axiom

(∼empty(push(A, x)) ∧ s = push(A, x) ∧ (∀ s, s = pop(push(A, x)) → s = A)) ⇒ 2

(∼empty(push(A, x)) ∧ s = push(A, x) ∧ (∀ s, s = A → s = A)) ⇒ 6

(∼false ∧ s = push(A, x)) ⇒ s = push(A, x)

Since s = push(A, x) → (∃ s’ (∼empty(s’)∧ s = s’∧ (∀ s, s = pop(s’) → s = A))) we use a rule
of consequence to conclude:

{s = push(A, x) → (∃ s' (∼empty(s') ∧ s = s' ∧ (∀s, s = pop(s'))),
(∃ s' (∼empty(s') ∧ s = s' ∧ (∀s, s = pop(s') → s = A)))} pop(s) {s = A}

{s = push(A, x)} pop(s) {s = A}

Applying the rule of adaptation to the invocation of the push operation results in the following rule of
inference.

{s = s'} push(s, x) {s = push(s', x)}

{∃ s' (s = s' ∧ (∀ s, s = push(s', x)→(s = push(A, x))} push(s, x) {s = push(A, x)}

Picking s’ = A permits us to simplify the previous precondition to S = A. Using rules of consequence
and composition, we conclude:

{s = A} push(s, x) {s = push(A, x)}, {s = push(A, x)} pop(s) {s = A}

{s = A} push(s, x); pop(s) {s = A}

107.4.2.4.5 Verifying Implementation-Level Programs
In the second part of verifying implementations of user-defined data types, implementations manipulating
concrete objects must satisfy preconditions and postconditions containing terms defined by the axioms.
The implementation of the Stack operation Push is shown below:

void Push(int x) {
/* pre: s = s'; post: s = push(s',x) */
s.top = s.top + 1;
s.v[s.top] = x;

}

Hoare [1972] introduced representation mappings to map implementation-level objects to their corre-
sponding user-level objects. In the implementation of type Stack, an instance s of type Stack consisted of
an array of integers s.v and an integer s.top indicating the topmost value. To verify the correctness of an
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implementation of type Stack we define a representation mapping A which maps an array and an integer
to its corresponding user-level value.

1. A(s.v, 0) = estack
2. A(s.v, s.top + 1) = push(A(s.v, s.top), s.v[s.top + 1])

We replace instances of the user-level value s with corresponding instances of mapped implementation-
level values. The proof obligation for Push is {A(s.v, s.top) = s'} s.top = s.top + 1;
s.v[s.top] = x; {A(s.v, s.top) = push(s', x)} After using axioms of assignment
(for both scalar and array values) and composition, the final step in the verification is an application
of a rule of consequence.

A(s.v, s.top) = s' → (A(�(s.v, s.top + 1, x), s.top + 1) = push(s', x)),
{A(�(s.v, s.top + 1, x), s.top + 1) = push(s', x)}

s.top = s.top + 1; s.v[s.top] = x; {A(s.v, s.top) = push(s', x)}

{A(s.v, s.top) = s'} s.top = s.top + 1; s.v[s.top] = x; {A(s.v, s.top) = push(s', x)}

To show that the antecedent is true, we need to axiomatize the array assignment and subscript operations:

1. newarray[J] = 0
2. �(A,I,X)[J] = (if I = J then X else A[J])

We continue using term rewriting:

Term Axiom

A(�(s.v, s.top + 1, x), s.top + 1) ⇒ Map 2
push(A(�(s.v, s.top + 1, x), s.top),

�(s.v, s.top + 1,x)[s.top + 1]) ⇒ Array 2
push(A(�(s.v, s.top + 1, x), s.top),

(if s.top + 1 = s.top + 1 then x else s.v[s.top + 1])) ⇒ x = x
push(A(�(s.v, s.top + 1, x), s.top), x)

At this point, we need to reduce A(�(s.v, s.top + 1, x), s.top) to A(s.v, s.top) to achieve equality. Since
the representation mapping only maps values s.v[i] for values of i in the range 1 ≤ i ≤ s.top, we can reach
this conclusion by proving the following theorem.

Term

(i < s.top + 1 → (�(s.v, s.top + 1,x)[i] = s.v[i]))
(i < s.top + 1 → (if s.top + 1 = i then x else s.v[i]) = s.v[i])
(i < s.top + 1 → (if s.top + 1 = i then x = s.v[i] else s.v[i] = s.v[i]))
(i < s.top + 1 → (if s.top + 1 = i then x = s.v[i] else true))
(i < s.top + 1 ∧ s.top + 1 = i → x = s.v[i]) ∧

(i < s.top + 1 ∧ ∼(s.top + 1 = i) → true)
(false → x = s.v[i]) ∧ (i < s.top + 1 ∧ ∼(s.top + 1 = i) → true)
true ∧ (i < s.top + 1 ∧ ∼(s.top + 1 = i) → true)
true ∧ true

107.5 Current Status

General properties of programs, particularly that variables are initialized before they are used and that no
invalid memory references or memory leaks occur, are easy to check automatically. However, verification
of the most problem-specific properties is still carried out manually by inspections. As a result, unqual-
ified guarantees about properties cannot be made because the software artifacts inspected may contain
deficiencies or the inspectors may not have been thorough enough to find obscure failures.
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FIGURE 108.5 The incremental model.

a plan is developed for the next increment. The plan addresses the modification of the core product to
better meet the needs of the customer and the delivery of additional features and functionality. This process
is repeated following the delivery of each increment, until the complete product is produced.

Incremental development is particularly useful when staffing is unavailable for a complete implementa-
tion by the business deadline that has been established for the project. Early increments can be implemented
with fewer people. If the core product is well received, then additional staff (if required) can be added to
implement the next increment. In addition, increments can be planned to manage technical risks.

108.1.4.2 The Spiral Model

The spiral model, originally proposed by Boehm [Boehm 1988], is an evolutionary software process model
that couples the iterative nature of prototyping with the controlled and systematic aspects of the linear
sequential model. It provides the potential for rapid development of incremental versions of the software.
Using the spiral model, software is developed in a series of incremental releases. During early iterations,
the incremental release might be a paper model or prototype. During later iterations, increasingly more
complete versions of the engineered system are produced.

The spiral model is divided into a number of framework activities, also called task regions. Typically, there
are between three and six task regions. Figure 108.6 depicts a spiral model that contains six task regions:

� Customer communication. Tasks required to establish effective communication between developer
and customer.

� Planning. Tasks required to define resources, timelines, and other project-related information.
� Risk analysis. Tasks required to assess both technical and management risks.
� Engineering. Tasks required to build one or more representations of the application.
� Construction and release. Tasks required to construct, test, install, and provide user support (e.g.,

documentation and training).
� Customer evaluation. Tasks required to obtain customer feedback based on evaluation of the soft-

ware representations created during the engineering stage and implemented during the installation
stage.
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FIGURE 108.6 A typical spiral model.

Each of the regions is populated by a series of work tasks that are adapted to the characteristics of the
project to be undertaken. For small projects, the number of work tasks and their formality is low. For larger,
more critical projects, each task region contains more work tasks that are defined to achieve a higher level
of formality. In all cases, the umbrella activities (e.g., software configuration management and software
quality assurance) are performed.

As this evolutionary process begins, the software engineering team moves around the spiral in a clockwise
direction, beginning at the center. The first circuit around the spiral might result in development of a
product specification; subsequent passes around the spiral might be used to develop a prototype and then
progressively more sophisticated versions of the software. Each pass through the planning region results
in adjustments to the project plan. Cost and schedule are adjusted on the basis of feedback derived from
customer evaluation. In addition, the project manager adjusts the planned number of iterations required
to complete the software.

The spiral model is a realistic approach to the development of large-scale systems and software. Because
software evolves as the process progresses, the developer and customer better understand and react to risks
at each evolutionary level. The spiral model uses prototyping as a risk reduction mechanism but, more
importantly, enables the developer to apply the prototyping approach at any stage in the evolution of the
product. It maintains the systematic stepwise approach suggested by the classic life cycle but incorporates
it into an iterative framework that more realistically reflects the real word. The spiral model demands a
direct consideration of technical risks at all stages of the project and, if properly applied, should reduce
risks before they become problematic.

But like other paradigms, the spiral model is not a panacea. It may be difficult to convince customers
(particularly in contract situations) that the evolutionary approach is controllable. It demands considerable
risk assessment expertise, and it relies on this expertise for success. If a major risk is not uncovered and
managed, problems will undoubtedly occur. Finally, the model itself is relatively new and has not been
used as widely as the linear sequential or prototyping paradigms. It will take a number of years before
efficacy of this important new paradigm can be determined with absolute certainty.

108.1.4.3 The Component Assembly Model

Object technologies provide the technical framework for a component-based process model for software
engineering. The object-oriented paradigm emphasizes the creation of classes that encapsulate both data
and the algorithms that are used to manipulate the data. If properly designed and implemented, object-
oriented classes are reusable across different applications and computer-based system architectures.

The component assembly model (Figure 108.7) incorporates many of the characteristics of the spiral
model. It is evolutionary in nature [Nierstrasz 1992], demanding an iterative approach to the creation
of software. However, the component assembly model composes applications from prepackaged software
components (called “classes” in Figure 108.7).
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FIGURE 108.7 The component assembly model.

The engineering activity begins with the identification of candidate classes. This is accomplished by
examining the data that are to be manipulated by the application and the algorithms that will be applied
to accomplish the manipulation. Corresponding data and algorithms are packaged into a class.

Classes created in past software engineering projects are stored in a class library or repository. Once
candidate classes are identified, the class library is searched to determine if these classes already exist. If
they do, they are extracted from the library and reused. If a candidate class does not reside in the library,
it is engineered using object-oriented methods. The first iteration of the application to be built is then
composed, using classes extracted from the library and any new classes built to meet the unique needs of
the application. Process flow then returns to the spiral and will ultimately reenter the component assembly
iteration during subsequent passes through the engineering activity.

The component assembly model leads to software reuse, and reusability provides software engineers
with a number of measurable benefits. Based on studies of reusability, QSM Associates reports [Yourdon
1994] component assembly leads to a 70% reduction in development cycle time, an 84% reduction in
project cost, and a productivity index of 26.2, compared with an industry norm of 16.9. Although these
results are a function of the robustness of the component library, there is little question that the component
assembly model provides significant advantages for software engineers.

108.1.4.4 The Concurrent Development Model

The concurrent development model, sometimes called concurrent engineering, has been described in the
following manner by Davis and Sitaram [Davis and Sitaram 1994]:

Project managers who track project status in terms of the major phases [of the classic life cycle]
have no idea of the status of their projects. These are examples of trying to track extremely
complex sets of activities using overly simple models. Note that although . . . [a large] project
is in the coding phase, there are personnel on the project involved in activities typically associ-
ated with many phases of development simultaneously. For example, . . . personnel are writing
requirements, designing, coding, testing, and integration testing [all at the same time]. Soft-
ware engineering process models by Humphrey and Kellner [Humphrey and Kellner 1989] have
shown the concurrency that exists for activities occurring during any one phase. Kellner’s more
recent work [Kellner 1991] uses statecharts [a notation that represents the states of a process]
to represent the concurrent relationship existent among activities associated with a specific
event (e.g., a requirements change during late development), but fails to capture the richness of
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concurrency that exists across all software development and management activities in
project . . . Most software development process models are driven by time; the later it is, the
later in the development process you are. [A concurrent process model] is driven by user needs,
management decisions, and review results.

The concurrent process model can be represented schematically as a series of major technical activities,
tasks, and their associated states. For example, the engineering activity defined for the spiral model is accom-
plished by invoking the following tasks: prototyping and/or analysis modeling, requirements specification,
and design.∗

The concurrent process model is often used as the paradigm for development of client–server∗∗ applica-
tions. A client–server system is composed of a set of functional components. When applied to client–server,
the concurrent process model defines activities in two dimensions [Sheleg 1994]: a system dimension and
a component dimension. System level issues are addressed using three activities: design, assembly, and
use. The component dimension is addressed with two activities: design and realization. Concurrency is
achieved in two ways: (1) system and component activities occur simultaneously and can be modeling
using the state-oriented approach described above; (2) a typical client–server application is implemented
with many components, each of which can be designed and realized concurrently.

In reality, the concurrent process model is applicable to all types of software development and provides
an accurate picture of the current state of a project. Rather than confining software engineering activities
to a sequence of events, it defines a network of activities. Each activity on the network exists simultaneously
with other activities. Events generated within a given activity or at some other place in the activity network
trigger transitions among the states of an activity.

108.1.4.5 The Formal Methods Model

The formal methods model encompasses a set of activities that leads to formal mathematical specifica-
tion of computer software. Formal methods enable a software engineer to specify, develop, and verify a
computer-based system by applying a rigorous, mathematical notation. A variation on this approach, called
cleanroom engineering [Mills et al. 1987, Dyer 1992], is currently applied by some software development
organizations.

When formal methods (Chapter 107) are used during development, they provide a mechanism for
eliminating many of the problems that are difficult to overcome by using other software engineering
paradigms. Ambiguity, incompleteness, and inconsistency can be discovered and corrected more easily —
not through ad hoc review, but through the application of mathematical analysis. When formal methods
are used during design, they serve as a basis for program verification and therefore enable the software
engineer to discover and correct errors that might otherwise go undetected.

108.1.4.6 Fourth Generation Techniques

The term fourth generation techniques (4GT) encompasses a broad array of software tools that have one
thing in common: each enables the software engineer to specify some characteristic of software at a high
level. The tool then automatically generates source code based on the developer’s specification. There is
little debate that the higher the level at which software can be specified to a machine, the faster a program
can be built. The 4GT paradigm for software engineering focuses on the ability to specify software using
specialized language forms or a graphic notation that describes the problem to be solved in terms that the
customer can understand.

Currently, a software development environment that supports the 4GT paradigm includes some or all
of the following tools: nonprocedural languages for database query, report generation, data manipulation,

∗It should be noted that analysis and design are complex tasks that require substantial discussion.
∗∗In client–server applications, software functionality is divided between clients (normally PCs) and a server

(a more powerful computer) that typically maintains a centralized database.
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screen interaction and definition, and code generation; high-level graphics capability; and spreadsheet
capability. Initially, many of the tools noted above were available only for very specific application domains,
but today 4GT environments have been extended to address most software application categories.

Like other paradigms, 4GT begins with a requirements gathering step. Ideally, the customer would
describe requirements and these would be directly translated into an operational prototype. But this is
unworkable. The customer may be unsure of what is required, may be ambiguous in specifying facts that
are known, and may be unable or unwilling to specify information in a manner that a 4GT tool can
consume. For this reason, the customer–developer dialog described for other process models remains an
essential part of the 4GT approach.

For small applications, it may be possible to move directly from the requirements gathering step to
implementation using a nonprocedural fourth generation language (4GL). However, for larger efforts, it
is necessary to develop a design strategy for the system, even if a 4GL is to be used. The use of 4GT
without design (for large projects) will cause the same difficulties (poor quality, poor maintainability,
poor customer acceptance) that we have encountered when developing software by using conventional
approaches.

Implementation using a 4GL enables the software developer to represent desired results in a manner
that results in automatic generation of code to generate those results. Obviously, a data structure with
relevant information must exist and be readily accessible by the 4GL.

To transform a 4GT implementation into a product, the developer must conduct thorough testing,
develop meaningful documentation, and perform all other solution integration activities that are also
required in other software engineering paradigms. In addition, the 4GT-developed software must be built
in a manner that enables maintenance to be performed expeditiously.

Like all software engineering paradigms, the 4GT model has advantages and disadvantages. Proponents
claim dramatic reduction in software development time and greatly improved productivity for people
who build software. Opponents claim that current 4GT tools are not all that much easier to use than
programming languages, that the resultant source code produced by such tools is “inefficient,” and that
the maintainability of large software systems developed using 4GT is open to question.

There is some merit in the claims of both sides, and it is possible to summarize the current state of 4GT
approaches:

1. The use of 4GT has broadened considerably over the past decade and is now a viable approach for
many different application areas. Coupled with computer-aided software engineering (CASE) tools
and code generators, 4GT offers a credible solution to many software problems.

2. Data collected from companies that are using 4GT indicate that time required to produce software is
greatly reduced for small and intermediate applications and that the amount of design and analysis
for small applications is also reduced.

3. However, the use of 4GT for large software development efforts demands as much or more analysis,
design, and testing (software engineering activities) to achieve substantial time saving that can be
achieved through the elimination of coding.

To summarize, 4GT have already become an important part of software development. When coupled
with component assembly approaches, the 4GT paradigm may become the dominant software development
strategy in the 21st century.

108.2 The Management Spectrum

Effective software project management focuses on the three P’s: people, problem, and process. The order is
not arbitrary. The manager who forgets that software engineering work is an intensely human endeavor
will never have success in project management. A manager who fails to encourage comprehensive customer
communication early in the evolution of a project risks building an elegant solution for the wrong problem.
Finally, the manager who pays little attention to the process runs the risk of inserting competent technical
methods and tools into a vacuum.
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108.2.1 People

The cultivation of motivated, highly skilled software people has been discussed since the 1960s (e.g.,
[Cougar and Zawacki 1980, DeMarco and Lister 1987, Weinberg 1988]). The Software Engineering Institute
has sponsored a people management maturity model “to enhance the readiness of software organizations
to undertake increasingly complex applications by helping to attract, grow, motivate, deploy, and retain
the talent needed to improve their software development capability” [Curtis 1989].

The people management maturity model defines the following key practice areas for software peo-
ple: recruiting, selection, performance management, training, compensation, career development, or-
ganization, and team and culture development. Organizations that achieve high levels of maturity in
the people management area have a higher likelihood of implementing effective software engineering
practices.

108.2.2 The Problem

Before a project can be planned, objectives and scope should be established, alternative solutions should
be considered, and technical and management constraints should be identified. Without this information,
it is impossible to develop reasonable estimates of the cost, a realistic breakdown of project tasks, or a
manageable project schedule that provides a meaningful indication of progress.

The software developer and customer must meet to define project objectives and scope. In many cases,
this activity occurs as part of a structured customer communication process such as joint application
design (JAD) [Wood and Silver 1994]. JAD is an activity that occurs in five phases: project definition,
research, preparation, the JAD meeting, and document preparation. The intent of each phase is to develop
information that helps better define the problem to be solved or the product to be built.

108.2.3 The Process

A software process can be characterized as shown in Figure 108.8. A small number of framework activities
are applicable to all software projects, regardless of their size or complexity. A number of task sets — tasks,
milestones, deliverables, and quality assurance points — enable the framework activities to be adapted
to the characteristics of the software project and the requirements of the project team. Finally, umbrella
activities — such as software quality assurance, software configuration management, and measurement —
overlay the process model. Umbrella activities are independent of any one framework activity and occur
throughout the process.

FIGURE 108.8 A common process framework.
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In recent years, there has been a significant emphasis on process “maturity” [Paulk et al. 1993]. The
Software Engineering Institute (SEI) has developed a comprehensive assessment model that is predicated
on a set of software engineering capabilities that should be present as organizations reach different levels
of process maturity. To determine an organization’s current state of process maturity, the SEI uses an
assessment questionnaire and a five-point grading scheme. The grading scheme determines compliance
with a capability maturity model [Paulk et al. 1993] that defines key activities required at different levels
of process maturity. The SEI approach provides a measure of the global effectiveness of a company’s
software engineering practices and establishes five process maturity levels that are defined in the following
manner:

Level 1, Initial: The software process is characterized as ad hoc and occasionally even chaotic. Few
processes are defined, and success depends on individual effort.

Level 2, Repeatable: Basic project management processes are established to track cost, schedule, and
functionality. The necessary process discipline is in place to repeat earlier successes on projects with
similar applications.

Level 3, Defined: The software process for both management and engineering activities is documented,
standardized, and integrated into an organization-wide software process. All projects use a docu-
mented and approved version of the organization’s process for developing and maintaining software.
This level includes all characteristics defined for level 2.

Level 4, Managed: Detailed measures of the software process and product quality are collected. Both
the software process and products are quantitatively understood and controlled by using detailed
measures. This level includes all characteristics defined for level 3.

Level 5, Optimizing: Continuous process improvement is enabled by quantitative feedback from the
process and from testing innovative ideas and technologies. This level includes all characteristics
defined for level 4.

The five levels defined by the SEI are derived as a consequence of evaluating responses to the SEI assessment
questionnaire that is based on the capability maturity model. The results of the questionnaire are distilled
to a single numerical grade that provides an indication of an organization’s process maturity.

The SEI has associated key process areas (KPAs) with each of the maturity levels. The KPAs describe those
software engineering functions (e.g., software project planning, requirements management) that must be
present to satisfy good practice at a particular level. Each KPA is described by identifying the following
characteristics:

� Goals: The overall objectives that the KPA must achieve.
� Commitments: Requirements (imposed on the organization) that must be met to achieve the goals

and provide proof of intent to comply with the goals.
� Abilities: Those things that must be in place (organizationally and technically) that will enable the

organization to meet the commitments.
� Activities: The specific tasks that are required to achieve the KPA function.
� Methods for monitoring implementation: The manner in which the activities are monitored as they

are put into place.
� Methods for verifying implementation: The manner in which proper practice for the KPA can be

verified.

Eighteen KPAs (each defined using the structure noted above) are defined across the maturity model and
are mapped into different levels of process maturity.

Each of the KPAs is defined by a set of key practices that contribute to satisfying its goals. The key
practices are policies, procedures, and activities that must occur before a key process area has been fully
instituted. The SEI defines key indicators as “those key practices or components of key practices that offer
the greatest insight into whether the goals of a key process area have been achieved.” Assessment questions
are designed to probe for the existence (or lack thereof) of a key indicator.
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108.3 Software Project Management

Software project management encompasses the following activities: measurement, project estimating, risk
analysis, scheduling, tracking, and control. A comprehensive discussion of these topics is beyond the scope
of this chapter, but a brief overview of each topic will enable the reader to understand the breadth of
management activities required for a mature software engineering organization.

108.3.1 Measurement and Metrics

To be most effective, software metrics should be collected for both the process and the product. Process-
oriented metrics [Hetzel 1993, Jones 1991] can be collected during the process and after it has been
completed. Process metrics collected during the process focus on the efficacy of quality assurance activities,
change management, and project management. Process metrics collected after a project has been completed
examine the efficacy of various software engineering activities and productivity. Process measures are
normalized using either lines of code or function points [Dreger 1989], so that data collected from many
different projects can be compared and analyzed in a consistent manner. Product metrics measure technical
characteristics of the software that provide an indication of software quality [Fenton 1991, Zuse 1990,
Lorenz and Kidd 1994]. Measures can be applied to models created during analysis and design activities,
during code generation, and during testing. The mechanics of measurement and the specific measures to
be collected are beyond the scope of this chapter.

108.3.2 Project Estimating

Scheduling and budgets are often dictated by business issues. The role of estimating within the software
process often serves as a “sanity check” on the predefined deadlines and budgets that have been estab-
lished by management. (Ideally, the software engineering organization should be intimately involved in
establishing deadlines and budgets, but this is not a perfect or fair world.)

All software project estimation techniques require that the project have a bounded scope, and all rely on
a high-level functional decomposition of the project and an assessment of project difficulty and complexity.
There are three broad classes of estimation techniques [Pressman 1993] for software projects:

Effort estimation techniques. The project manager creates a matrix in which the left-hand column
contains a list of major system functions derived using functional decomposition applied to project
scope. The top row contains a list of major software engineering tasks derived from the common
process framework. The manager (with the assistance of technical staff) estimates the effort required
to accomplish each task for each function.

Size-oriented estimation. A list of major system functions derived using functional decomposition
applied to project scope. The “size” of each function is estimated by using either lines of code
(LOC) or function points (FP). Average productivity data (e.g., function points per person month)
for similar functions or projects are used to generate an estimate of effort required for each function.

Empirical models. Using the results of a large population of past projects, an empirical model that
relates product size (in LOC or FP) to effort is developed, using a statistical technique such as
regression analysis. The product size for the work to be done is estimated and the empirical model
is used to generate projected effort.

In addition to the above techniques, a software project manager can develop estimates by analogy; that is,
by examining similar past projects and projecting effort and duration recorded for these projects to the
current situation.

108.3.3 Risk Analysis

Almost five centuries have passed since Machiavelli said: “I think it may be true that fortune is the
ruler of half our actions, but that she allows the other half to be governed by us . . . [fortune] is like
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an impetuous river . . . but men can make provision against it by dykes and banks.” Fortune (we call it
risk) is in the back of every software project manager’s mind, and that is often where it stays. And as a
result, risk is never adequately addressed. When bad things happen, the manager and the project team are
unprepared.

In order to “make provision against it,” a software project team must conduct risk analysis explicitly. Risk
analysis [Charette 1990, Jones 1994] is actually a series of steps that enable the software team to perform
risk identification, risk assessment, risk prioritization, and risk management. The goals of these activities
are: (1) to identify those risks that have a high likelihood of occurrence; (2) to assess the consequence
(impact) of each risk should it occur; and (3) to develop a plan for mitigating the risks when possible,
monitoring factors that may indicate their arrival, and developing a set of contingency plans should they
occur.

Risk identification is a systematic attempt to specify threats to the project plan (estimates, schedule,
resource loading, etc.). By identifying known and predictable risks, the project manager takes a first step
toward avoiding them when possible and controlling them when necessary.

There are two distinct types of risks for each of the categories that have been presented: generic risks
and product-specific risks. Generic risks are a potential threat to every software project. Product-specific
risks can be identified only by those with a clear understanding of the technology, the people, and the
environment that are specific to the project at hand. To identify product-specific risks, the project plan
and the software statement of scope are examined and an answer to the following question is developed:
“What special characteristics of this product may threaten our project plan?”

Both generic and product-specific risks should be identified systematically. Gilb [Gilb 1988] drives this
point home when he states: “If you don’t actively attack the risks, they will actively attack you.”

Risk projection, also called risk estimation, attempts to rate each risk in two ways — the likelihood or
probability that the risk is real and the consequences of the problems associated with the risk, should
it occur. The project planner, along with other managers and technical staff, performs four risk pro-
jection activities [Babich 1986]: (1) establish a scale that reflects the perceived likelihood of a risk;
(2) delineate the consequences of the risk; (3) estimate the impact of the risk on the project and the
product; and (4) note the overall accuracy of the risk projection so that there will be no misunder-
standings.

All of the risk analysis activities presented to this point have a single goal — to assist the project team
in developing a strategy for dealing with risk. An effective strategy must consider three issues:

� Risk avoidance
� Risk monitoring, and
� Risk management and contingency planning.

The manner in which each of these issues is to be addressed is documented in a plan for risk mitigation,
monitoring, and management.

108.3.4 Scheduling

Fred Brooks, the well-known author of The Mythical Man-Month [Brooks 1975], was once asked how
software projects fall behind schedule. His response was as simple as it was profound: “One day at a time.”

The reality of a technical project (whether it involves building a hydroelectric plant or developing an
operating system) is that hundreds of small tasks must occur to accomplish a larger goal. Some of these
tasks lie outside the mainstream and may be completed without worry about impact on project completion
date. Other tasks lie on the “critical path.”∗ If these “critical” tasks fall behind schedule, the completion
date of the entire project is put into jeopardy.

∗The critical path is the sequence of project tasks that nust be closely monitored by the project manager.

© 2004 by Taylor & Francis Group, LLC



The objective of the project manager is to define all project tasks, identify the ones that are critical, and
then track their progress to ensure that delay is recognized “one day at a time.” To accomplish this, the
manager must have a schedule that has been defined at a degree of resolution that enables the manager to
monitor progress and control the project.

Software project scheduling is an activity that distributes estimated effort across the planned project
duration by allocating the effort to specific software engineering tasks. It is important to note, however, that
the schedule evolves over time. During early stages of project planning, a macroscopic schedule is developed.
This type of schedule identifies all major software engineering activities and the product functions to which
they are applied. As the project gets under way, each entry on the macroscopic schedule is refined into
a detailed schedule. Here, specific software tasks (required to accomplish an activity) are identified and
scheduled.

Scheduling for software development projects can be viewed from two rather different perspectives. In
the first, an end-date for release of a computer-based system has already (and irrevocably) been established.
The software organization is constrained to distribute effort within the prescribed time frame. The second
view of software scheduling assumes that rough chronological bounds have been discussed but that the end-
date is set by the software engineering organization. Effort is distributed to make best use of resources and
an end-date is defined after careful analysis of the software. Unfortunately, the first situation is encountered
far more frequently than the second.

As in all other areas of software engineering, a number of basic principles guide software project
scheduling:

Compartmentalization: The project must be compartmentalized into a number of manageable activities
and tasks. To accomplish compartmentalization, both the product and the process are decomposed
(Chapter 3).

Interdependency: The interdependencies of each compartmentalized activity or task must be deter-
mined. Some tasks must occur in sequence, whereas others can occur in parallel. Some activities
cannot commence until the work product produced by another is available. Other activities can
occur independently.

Time allocation: Each task to be scheduled must be allocated some number of work units (e.g., person-
days of effort). In addition, each task must be assigned a start date and a completion date that is a
function of the interdependencies and whether work will be conducted on a full-time or part-time
basis.

Effort validation. Every project has a defined number of staff members. As time allocation occurs,
the project manager must ensure that no more than the allocated number of people have been
allocated at any given time. For example, consider a project that has three assigned staff members
(e.g., 3 person-days are available per day of assigned effort).∗ On a given day, seven concurrent tasks
must be accomplished. Each task requires 0.50 person-day of effort. More effort has been allocated
than there are people to do the work.

Defined responsibilities: Every task that is scheduled should be assigned to a specific team
member.

Defined outcomes: Every task that is scheduled should have a defined outcome. For software projects,
the outcome is normally a work product (e.g., the design of a module) or a part of a work product.
Work products are often combined in deliverables.

Defined milestones: Every task or group of tasks should be associated with a project milestone. A
milestone is accomplished when one or more work products have been reviewed for quality and
have been approved.

Each of the above principles is applied as the project schedule evolves.

∗In reality, less than 3 person-days are available because of unrelated meetings, sickness, vacation, and a variety of
other reasons. For our purposes, however, we assume 100% availability.

© 2004 by Taylor & Francis Group, LLC



108.3.5 Tracking and Control

Project tracking and control is most effective when it becomes an integral part of software engineering
work. A well-defined development strategy should provide a set of milestones that can be used for project
tracking. Control focuses on two major issues: quality and change.

To control quality, a software project team must establish effective techniques for software quality assur-
ance, and, to control change, the team should establish a software configuration management framework.

108.4 Software Quality Assurance

In his landmark book on quality, Crosby [Crosby 1979] states:

The problem of quality management is not what people don’t know about it. The problem is
what they think they do know . . .

In this regard, quality has much in common with sex. Everybody is for it. (Under certain
conditions, of course.) Everyone feels they understand it. (Even though they wouldn’t want to
explain it.) Everyone thinks execution is only a matter of following natural inclinations. (After
all, we do get along somehow.) And, of course, most people feel that problems in these areas are
caused by other people. (If only they would take the time to do things right.)

There have been many definitions of software quality proposed in the literature. For our purposes,
software quality is defined as: Conformance to explicitly stated functional and performance requirements,
explicitly documented development standards, and implicit characteristics that are expected of all professionally
developed software.

There is little question that the above definition could be modified or extended. If fact, a definitive
definition of software quality could be debated endlessly. But the definition stated above does serve to
emphasize three important points:

1. Software requirements are the foundation from which quality is assessed. Lack of conformance to
requirements is lack of quality.

2. A mature software process model defines a set of development criteria that guide the manner in
which software is engineered. If the criteria are not followed, lack of quality will almost surely result.

3. There is a set of implicit requirements that often goes unmentioned (e.g., the desire for good main-
tainability). If software conforms to its explicit requirements, but fails to meet implicit requirements,
software quality is suspect.

Software quality is designed into a product or system. It is not imposed after the fact. For this reason,
software quality assurance (SQA) actually begins with the set of technical methods and tools that help the
analyst to achieve a high quality specification and the designer to develop a high quality design.

Once a specification (or prototype) and design have been created, each must be assessed for quality. The
central activity that accomplishes quality assessment is the formal technical review (FTR). The FTR —
conducted as a walkthrough or an inspection [Freedman and Weinberg 1990] — is a stylized meeting
conducted by technical staff with the sole purpose of uncovering quality problems. In many situations,
formal technical reviews have been found to be as effective as testing in uncovering errors in software [Gilb
and Graham 1993].

Software testing combines a multistep strategy with a series of test case design methods that help ensure
effective error detection. Many software developers use software testing as a quality assurance “safety net.”
That is, developers assume that thorough testing will uncover most errors, thereby mitigating the need for
other SQA activities. Unfortunately, testing, even when performed well, is not as effective as we might like
for all classes of errors. A much better strategy is to find and correct errors (using FTRs) before getting to
testing.
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The degree to which formal standards and procedures are applied to the software engineering process
varies from company to company. In many cases, standards are dictated by customers or regulatory
mandate. In other situations standards are self-imposed. An assessment of compliance to standards may
be conducted by software developers as part of a formal technical review, or, in situations where independent
verification of compliance is required, the SQA group may conduct its own audit.

A major threat to software quality comes from a seemingly benign source: changes. Every change to
software has the potential for introducing error or creating side effects that propagate errors. The change
control process contributes directly to software quality by formalizing requests for change, evaluating
the nature of change, and controlling the impact of change. Change control is applied during software
development and, later, during the software maintenance phase.

Measurement is an activity that is integral to any engineering discipline. An important object of SQA
is to track software quality and assess the impact of methodological and procedural changes on improved
software quality. To accomplish this, software metrics must be collected.

Record keeping and recording for SQA provide procedures for the collection and dissemination of SQA
information. The results of reviews, audits, change control, testing, and other SQA activities must be-
come part of the historical record for a project and should be disseminated to development staff on a
need-to-know basis. For example, the results of each formal technical review for a procedural design
are recorded and can be placed in a “folder” that contains all technical and SQA information about a
module.

108.5 Software Configuration Management

Change is inevitable when computer software is built. And change increases the level of confusion among
software engineers who are working on a project. Confusion arises when changes are not analyzed before
they are made, recorded before they are implemented, reported to those who should be aware that they
have occurred, or controlled in a manner that will improve quality and reduce error. Babich [Babich 1986]
discusses this when he states:

The art of coordinating software development to minimize . . . confusion is called configuration
management. Configuration management is the art of identifying, organizing, and controlling
modifications to the software being built by a programming team. The goal is to maximize
productivity by minimizing mistakes.

Software configuration management (SCM) is an umbrella activity that is applied throughout the software
engineering process. Because change can occur at any time, SCM activities are developed to (1) identify
change, (2) control change, (3) ensure that change is being properly implemented, and (4) report change
to others who may have an interest.

A primary goal of software engineering is to improve the ease with which changes can be accommodated
and reduce the amount of effort expended when changes must be made.

108.6 Summary

The role of a software project manager is to understand the scope of the problem to be solved and, knowing
this, to select an appropriate development strategy for the problem. Once a strategy is selected, software
project management activities are conducted. Project management encompasses the measurement of the
process and the product, estimation, risk analysis, scheduling, and tracking. To control the project, software
quality assurance and software configuration management also must be conducted.
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Defining Terms

Capability maturity model: Defines key activities required at different levels of software process maturity.
Change control: An umbrella process that enables a project team to accept, evaluate, and act on changes

in a systematic manner.
Classic life cycle: A linear, sequential approach to process modeling.
Common process framework: A process model that encompasses a limited set of problem-solving activ-

ities populated by tasks, milestones, SQA points, and deliverables.
Component assembly model: A process model that encourages construction of software from reusable

software components.
Design: An activity that translates the requirements model into a more detailed model that is the guide

to implementation of the software.
Errors: A lack of conformance found before software is delivered to the customer.
Estimation: A project planning activity that attempts to project effort and cost for a software project.
Evolutionary model: A process model that is designed with the recognition that software evolves through

a number of iterations.
Formal methods: A mathematical approach to the specification and validation of computer-based

systems.
Formal technical review: A structured meeting conducted by software engineers and others with the

intent of uncovering errors in some deliverable or work product.
Fourth generation techniques: Encompasses a broad array of software tools that enables the software

engineer to specify some characteristic of software at a high level of abstraction.
Incremental model: A process model that results in delivery of versions of an application that provide

increasingly greater functionality.
Linear sequential model: A process model that defines a set of linear activities for developing computer

software.
Maintenance: The activities associated with changes to software after it has been delivered to end-users.
Measurement: Collecting quantitative data about the software or the software engineering process.
Object-oriented: An approach to software development that makes use of a classification approach and

packages data and processing together.
Process model: A model that outlines the major activities and work flow for software development and

acts as a framework for project management.
Prototyping: The creation of a mock-up of an application with the intent of helping a customer to better

identify requirements.
Quality: The degree to which a product conforms to both explicit and implicit requirements.
Rapid Application Development (RAD): A linear sequential software development process model that

emphasizes an extremely short development cycle.
Reengineering: A series of activities that transform old systems (with poor maintainability) into software

that exhibits high quality.
Requirements analysis: A modeling activity whose objective is to understand what the customer really

wants.
Risk analysis: The set of activities that identify and evaluate a potential problem or occurrence that may

put a project in jeopardy.
Scheduling: The activity that lays out a timeline for work to be conducted on a project.
Software engineering: A discipline that encompasses process, methods, and tools.
Software metrics: Quantitative measures of the process or the product.
Software quality assurance (SQA): A series of activities that assist an organization in producing high-

quality software.
Spiral model: An evolutionary software engineering paradigm.
Testing: A set of activities that attempt to find errors.
Work breakdown structure (WBS): The set of work tasks required to build the software; defined as part

of the process model.
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Further Information

The current state of the art in software engineering can best be determined from monthly publications such
as IEEE Software, Computer, and the IEEE Transactions on Software Engineering. Industry periodicals such as
Application Development Trends and Software Development often contain articles on software engineering
topics. The discipline is “summarized” every year in the Proceedings of the International Conference on
Software Engineering, sponsored by the IEEE and ACM, and is discussed in depth in journals such as ACM
Transactions on Software Engineering and Methodology, ACM Software Engineering Notes, and Annals of
Software Engineering.

Many software engineering books have been published in recent years. Some present an overview of
the entire process, whereas others delve into a few important topics to the exclusion of others. Three
anthologies that cover a wide range of software engineering topics are:

Keyes, J., ed. 1993. Software Engineering Productivity Handbook. McGraw–Hill, New York.
McDermid, J., ed. 1993. Software Engineer’s Reference Book. CRC Press, Boca Raton, FL.
Marchiniak, J. J., ed. 1994. Encyclopedia of Software Engineering. Wiley, New York.

An excellent three-volume series written by Weinberg (1992, 1993, 1994. Quality Software Management.
Dorset House) introduces basis systems thinking and management concepts, explains how to use mea-
surements effectively, and addresses “congruent action,” the ability to establish “fit” between the manager’s
needs, the needs of technical staff, and the needs of the business. It will provide both new and experienced
managers with useful information. Fred Brooks (1995. The Mythical Man-Month, Anniversary Edition,
Addison–Wesley, Reading, MA) has updated his classic book to provide new insight into software project
and management issues. S. Purba (1995. How to Manage a Successful Software Project. Wiley, New York)
presents a number of case studies that indicate why some projects succeed and others fail. E. Bennatan
(1995. Software Project Management in a Client/Server Environment. Wiley, New York) discussed special
management issues associated with the development of client/server systems.

R. House (1988. The Human Side of Project Management. Addison–Wesley, Reading, MA) and P. Crosby
(1989. Running Things: The Art of Making Things Happen. McGraw–Hill, New York) provide practical
advice for managers who must deal with human as well as technical problems. Books by T. DeMarco and
T. Lister [1987] and G. Weinberg [1988] provide useful insight into software people and the way in which
they should be managed.

Pragmatic guidance on project management is presented by F. O’Connell (1994. How To Run Successful
Projects. Prentice–Hall, Englewood Cliffs, NJ). Still another take on project management in the software
world is provided by L. Constantine (1995. Constantine on Peopleware. Prentice–Hall, Eaglewood Cliffs,
NJ).

A wide variety of information sources on software engineering and the software process is available on
the internet. An up-to-date list of World Wide Web references that are relevant to the software process can
be found at http://www.rspa.com.
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109.1 Introduction

A software architecture (henceforth architecture) is an abstraction that allows a designer to ignore low-
level implementation issues, such as programming languages, hardware and device requirements, and
communication protocols. Garlan and Perry [1995] state that architectures “simplify our ability to com-
prehend large systems by presenting them at a level of abstraction at which a system’s high-level design
can be understood.” The idea of abstracting away detail to uncover the essential structure of a complex
system is very old. The classical notion of architecture abstracts the structure of a building or other human
construction away from the entity itself. By 1980, this idea had been adopted by computer engineers and
network engineers. Common examples in these domains include RISC architectures, instruction set ar-
chitectures, shared-memory architectures [Hennessy and Patterson, 1996], layered architectures, TCP/IP
architectures, and IP forwarding architectures [Leon-Garcia and Widjaja, 2000].

Software architecture comprises two kinds of entities: components that perform computation and con-
nectors that express relationships (typically communication) between the components. An architectural
description must also include syntactic and semantic information about the components and connectors.
This information constrains how an assemblage of components and connectors can be formed and when
it can be regarded as an architecture. These constraints are embodied in an architecture description
language (ADL).

Software architectures allow designers to codify their expertise. One way to do this is by recognizing and
defining software architectural styles: collections of architectural features that tend to co-occur. The concept
of style is familiar from building architecture; examples include Gothic, Tudor, and skyscraper. Software
architectural styles can be abstractions of descriptors like client–server model, uses remote procedure calls,
or pipeline. They can also be embodied in collections of rules encapsulated in a specific paradigm for
software development.

Architecture description languages assist with the process of describing and developing software archi-
tectures and styles. They incorporate formal foundations that support architectural analysis: reasoning
about descriptions of architectures and architectural styles. Many formal techniques have been used for
this purpose, including specification languages, process algebras, graph grammars, and a variety of logics.
These techniques are used to investigate properties of architectures and styles along several dimensions.
Functional properties include the semantics of the components that make up an architecture. Structural
properties deal with the types of interactions supported by the components. Nonfunctional properties
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are more difficult to address formally; they include reliability, robustness, ease of use, conformance to
standards, hardware requirements, and security [Shaw and Garlan, 1996].

Architectural abstraction can potentially reduce testing costs. Because an architecture is often used to
develop multiple systems, the cost of any architecture level testing effort is amortized across all of these
systems [Richardson and Wolf, 1996]. It can also aid in software evolution and reuse. Finally, it is important
to note that much software is domain-specific. By creating architectural abstractions that are specific to
their domain, software organizations can combine the best aspects of standard platforms and standardized
components to create and specialize their domain-related product families [Garlan and Perry, 1995].

109.2 Underlying Principles

By the late 1970s, software engineers realized that there was a critical distinction between programming
in the small (using conventional programming languages) and programming in the large (building
industrial-strength software systems). In order to deal with the issues raised by programming in the large,
software systems were regarded as collections of modules, with communication between modules mediated
by clearly defined interfaces. Module interconnection languages (MILs) were developed to specify the
characteristics of these interfaces and particularly the resources required by and provided to the modules.
A MIL can be used to describe the global structure of a software system. Examples of early MILs are MIL75
[deRemer and Kron, 1976] and INTERCOL [Tichy, 1979].

By 1985, several researchers had come to realize that module specifications needed to express aspects
of interface semantics that could not be accommodated within the requires/provides model used by
early MILs. This realization gave rise to much research. For example, the Conic configuration language
developed at Imperial College [Magee et al., 1989] specifies how the components of a distributed system
are assembled. The STILE system described in Stovsky and Weide [1990] uses a graphical language that
embodies a similar approach.

Software systems specified in Conic are assemblages of group modules, which are hierarchical entities
made up of smaller modules. Lower-level modules may also be group modules, or they may be task modules,
which are specified using a programming language. The external interfaces of Conic modules consist of
exit ports and entry ports. Ports in turn have notify and request–reply modes. Communication between
Conic modules is specified by linking ports in their external interfaces that have the same type and mode.
A single notify exit port may be linked to a set of notify entry ports (or the reverse). A request–reply exit
port may be linked to only one request–reply entry port. Module specifications in Conic describe the
syntax of permissible connections between modules.

In general, the purpose of MILs is to describe the syntax of module interconnections. Alternative
attributes associated with module interfaces may be provides and requires (INTERCOL), notify and request–
reply (Conic), or entry and exit (Conic). Rice and Seidman [1994] presented a general model of MILs that
can express the specific syntactic constraints used by many MILs. The model is based on a number of
generic Z schemas [Spivey, 1989] that can be customized for a particular MIL. It has been used to model
Conic and Stile.

For similar reasons, Batory and O’Malley [1992] developed a model of hierarchical software systems.
This model assumes that software systems have an explicitly layered organization. Components are selected
at each layer from one or more domain-specific lists of choices. Communications between components
may only take place by invoking operations that access components that are adjacent in the hierarchy. The
Batory model was first applied to file structures and database management systems.

These models can be used in two distinct ways: to analyze the features of a particular MIL and to
explore the design space for MILs. In either case, they provide formalism that describes the way in which a
particular MIL permits modules to be composed to form a software system. By analogy with conventional
programming languages, MILs can be used to describe the syntax that governs the construction of a system
of modules.

Software architectures are abstract models that contain syntactic and semantic information about
the components of software systems and the relationships between those components. Since MILs only
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give syntactic information, they cannot be used to represent software architectures. Modeling a software
architecture requires a way to describe the semantics associated with the composition of modules in a
software system. A similar observation was made in Abowd et al. [1995].

Software architectures can be described at several levels [Shaw and Garlan, 1996, p. 130]. First, one can
describe the architecture of a particular software system. Second, one can describe a family of architectures
as an architectural style. Third, one can develop an architecture description language (ADL) that is based
on a formal theory of software architectures. Finally, one can define semantics for ADLs. Formalisms that
can be used for all of these descriptions include specification languages (e.g., Z), process algebras (e.g.,
CSP, �-calculus), graph grammars and regular expressions, and partial orders.

109.3 Describing Individual Software Architectures

The software architecture modeling process will be illustrated by a relatively early example that is particu-
larly well worked out. In the late 1980s, Garlan and Delisle developed a formal model for the architecture
of a digital oscilloscope [Delisle and Garlan, 1990]; also see the discussions in Garlan and Shaw [1996,
Sections 3.2, 6.2]. The goal of their project was to develop an oscilloscope system architecture that would
increase reuse and make configuration easier. Several models were initially proposed but rejected. For ex-
ample, an object-oriented model identified relevant data types but could not explain how they fit together.
In the end, the architecture was represented by a pipe-and-filter model modified to allow an external entity
to set filter parameters. The processing done by a digital oscilloscope is modeled as a pipeline of nodes that
successively transform the signals. The processing carried out by the individual nodes can be configured
by a user through parameter settings. For example, the waveform display is parameterized by user-defined
factors that support zooming and panning. The description given below is taken from Section 6.2 of Shaw
and Garlan [1996].

A portion of the model is shown in Figure 109.1 (taken from Figure 6.1 in Shaw and Garlan [1996]).
The four nodes successively subtract a DC offset from a signal (Couple), extract a time-sliced waveform
from a signal (Acquire), create a trace by converting (time, voltage) pairs to horizontal and vertical values
(WaveformToTrace, or W → T), and clip it to a display screen (Clip).

The oscilloscope’s inputs (signals), internal representations (waveforms), and outputs (traces) are mod-
eled as functions. The model uses Z formalism [Spivey, 1989], in which → represents a function and −|→
a partial function defined on a subset of its domain. A brief summary of Z notation is given in the
appendix for this chapter. This distinguishes waveforms, which are only defined on a specific time
interval, from signals. Signals, waveforms, and traces are specified to be Signal == AbsTime → Volts,
Waveform == AbsTime −|→ Volts, and Trace == Horiz −|→ Vert.

For our present purposes, it will be sufficient to give a precise characterization of the first node of
the pipeline. The Couple transformer subtracts a DC offset from a signal. The user has three parameter
choices: DC, AC, Ground. Choosing DC leaves the signal unchanged; choosing AC subtracts a DC offset,
and choosing Ground sets the signal to zero. The formal specification of this architectural element is given
in Figure 109.2, where Coupling is specified to be either DC, AC, or GND.

Similar formal descriptions can be given for the Acquire, WavefrontToTrace, and Clip nodes, but lack of
space precludes their inclusion here. The pieces are assembled into a system by the specification illustrated
in Figure 109.3.

〈Coupling〉 〈Delay, Duration〉 〈ScaleH, ScaleV
PosnH, PosnV〉

❄ ❄ ❄
S✲ Couple

S✲ Acquire
W✲ W→T

T✲ Clip
T✲

FIGURE 109.1 The architecture of a digital oscilloscope.
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Couple : Coupling → Signal → Signal

Couple DC s = s
Couple AC s = (� t: AbsTime • s (t) − dc(s ))
Couple GND s == (� t: AbsTime • 0)

FIGURE 109.2 Z specification for the Couple transformer.

ChannelParameters

c : Coupling
delay, dur : RelTime
scaleH : RelTime
scaleV : Volts
posnV : Vert
posnH : Horiz

ChannelConfigurations : ChannelParameters → TriggerEvent → Signal → Time

ChannelConfiguration == (� trig: TriggerEvent •

Clip o WaveformToTrace (p.scaleH, p.scaleV, p.posnH, p.posnV)
o Acquire (p.delay, p.dur) trig Couple p.c)

FIGURE 109.3 Z specification for digital oscilloscope.

This description represents the high-level structure of the digital oscilloscope software. It describes what
the software is to do and how it is to be organized. It can be used as the basis for low-level design and code
development, while also serving as the basis for evolutionary change. This perspective has recently been
elaborated into the idea of software product families (see Jayazeri et al. [2000]).

109.4 Architecture Description Languages

Since the early 1990s, many groups of investigators have proposed ADLs for describing software architec-
tures. At first glance, these languages are quite different from each other. The goal of Medvidovic and Taylor
[2000] is to provide some clarity by giving a framework for classifying and comparing ADLs. This frame-
work looks at the way individual ADLs model architectural elements (components and connectors) and
the way these elements are configured to form architectures. Model features considered by the framework
include interfaces, types, semantics, constraints, evolution, and nonfunctional properties. Configuration
features treated include understandability, refinement and traceability, heterogeneity, scalability, evolu-
tion, and dynamism. Medvidovic and Taylor also consider the tool support provided by various ADLs.
In this section, we will give brief treatments of two rather different ADLs: Rapide [Luckham et al., 1995]
and C2SADEL [Medvidovic et al., 1999]. Both ADLs were developed in the context of specific application
domains.

Rapide is an event-based, concurrent, object-oriented language specifically designed for prototyping
architectures of distributed systems. Its features include an execution model and executable architec-
ture constructs, formal constraints, and mappings that support constraint-based definition of (industry
standard) reference architectures and testing of systems for conformance to these standards. A Rapide
architecture consists of components and connections. An architecture is described by specifying module
(component) interfaces, connection rules that define communication between the interfaces, and for-
mal constraints that define legal and illegal patterns of communication. These architectural aspects are
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Type Application is interface
extern action Request (p: params);
public action Results (p: params);

behavior
(?M in String) Receive (?M) => Results (?M);;

end Application

Type Resource is interface
extern action Results (Msg: String);
public action Receive (Msg: String);

end Resource

FIGURE 109.4 Examples of Rapide module interfaces.

architecture AP_RM_Only return X/Open is
P: Application; Q:Resource; ...
connect (?M in String)

P.Request(?M) to Q.Receive (?M);
end AP_RM_Only

FIGURE 109.5 Defining the flow of events among Rapide components.

expressed using distinct sublanguages. The interfaces of a Rapide architecture provide a template for a
family of systems; specific systems are instantiated by assigning modules to interfaces. The architecture
and each of its instances can be analyzed and executed.

An executing Rapide architecture generates a partially ordered set (poset) of events that interact with
threads of control (called processes, which may be module processes, architecture connections, or inter-
face behavior transitions). Rapide architectural models use an execution semantics built on three event
dependence relations:

A and B are generated by the same process, and A is generated before B .
A process observes A and generates B .
A process generates A and writes to a variable v ; another process within the same module reads v before

any intervening write to v , and then generates B .

Module interfaces are specified by a types language. The example shown in Figure 109.4 [Luckham et al.,
1995] defines Application and Resource components. In Application, the observation of a Receive event
causes a Results event to be generated with the same parameter.

An architecture language is used to describe the flow of events between components. In the simple
example shown in Figure 109.5 [Luckham et al., 1995], a connection is defined between Application
module P and Resource module Q. Whenever P generates a Request event, Q will observe a Receive event
with the same data.

More complex connection patterns are possible. Algebraic constraints and pattern constraints can be
used to control how events may occur. Figure 109.6 shows a specification [Luckham et al., 1995] in which

The –> operator requires that the Receive and Result events occur in dependent pairs.
The ∗ operator asserts that any number of pairs may occur.
The ∼ operator asserts that the events in the pairs must be distinct.
The ?S parameter is used to require that the Receive and Results events have the same parameter.

Rapide has been applied to specify the X/Open distributed transaction processing (DTP) reference archi-
tecture. Interfaces in the published X/Open standard are formalized as Rapide interface types, and textual
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type Resource is interface
public action Receive (Msg: String);
extern action Results (Msg: String);
constraint

match
((?S in String) (Receive (?S) -> Results (?S)))^(*~);

end Resource

FIGURE 109.6 Complex connections among Rapide components.

descriptions of calling sequence protocols are formalized as Rapide connection rules and pattern con-
straints. Rapide has been used to test the conformance of a combination of two X/Open DTP subsystems
with the reference architecture. This is done by constructing a map between the two Rapide models that
preserves the necessary structures and constraints.

C2ADEL [Medvidovic et al., 1999] was developed explicitly for modeling architectures within the
C2 architectural style [Taylor et al., 1996], which was itself developed for use in the GUI application
domain. A C2 architecture is specified as a topology that defines its components and connectors and their
interconnections. The components and connectors are instantiated from type definitions. This makes
it possible to use subtyping and type checking. The example illustrated in Figure 109.7, taken from
Medvidovic et al. [1999], shows how an architecture is specified in C2SADEL. Note the explicit top and
bottom connections, which enforce the requirement of the C2 style that components are linearly ordered
into layers that may only communicate with components immediately above or below them.

Components may be virtual (not defined within C2SADEL) or external (defined elsewhere in a spec-
ification). Figure 109.8 gives a specification for the DeliveryPort component taken from Medvidovic
et al. [1999]. Note that # denotes set cardinality and ∼ indicates the value of a variable after an operation
has been performed. The invariant requires that the current capacity of a port be between zero and the
maximum capacity. The example illustrates how operations required and provided by a component can
be specified.

Many ADLs use formal methods and notation that are likely to be unfamiliar to practitioners in industry.
Examples include posets in Rapide and first-order logic in C2SADEL. This may present an obstacle to
widespread use of software architecture modeling. An alternative approach is presented in Robbins et al.
[1998]. The authors show how universal modeling language (UML) metamodels and stereotypes can be
used to represent C2 architecture models in UML.

109.5 Describing Architectural Styles

Architectural styles are “sets of design rules that identify the kinds of components and connectors that
may be used to compose a system or subsystem, together with local or global constraints on the way the
composition is done” [Shaw and Clements, 1996]. The importance of identifying useful styles is widely
recognized [Abowd et al., 1995]. This section presents a formalism and methodology for describing both
software architectural styles and architectures built within specific styles. The approach is embodied in a
language called ASDL [Rice and Seidman, 1996], which can be used to compare architectural styles and
particular architectures, and also to gain an increased understanding of complex architectural styles. One
important feature of ASDL is its powerful and flexible capabilities for abstraction and representation of
hierarchy in descriptions of software architectures.

An ASDL description of a software architecture or architectural style is made up of three elements:
templates, settings, and units. Templates represent interfaces of components that are available for inclusion
into a software architecture. Settings represent architectures that have been built by instantiating templates.
Units represent system hierarchy: they can encapsulate settings so that their interfaces can be used in turn
as templates or represent interfaces designed in a top-down manner. Each element is associated with a
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Architecture CargoRouteSystem is
component_types {

component DeliveryPort is extern (Port.cs;)
component graphicsBinding is virtual ()

}
connector_types {

connector FiltConn is (filter msg_filter;)
connector RegConn is {filter no_filter)

}
architectural_topology {

component_instances {
Runway : DeliveryPort
Binding : GraphicsBinding;
}

connector_instances {
UtilityConn : FiltConn;
BindingConn: RegConn;
}
connections {

connector UtilityConn {
top SimClock, DistanceCalc;
bottom Runway, Truck;

}
connector BindingConn {

top LayoutArtist, RouteArt;
bottom Binding;

}
}

}
}

FIGURE 109.7 C2SADEL architecture specification.

generic Z schema [Spivey, 1989], which is invariant across all styles. A brief introduction to Z syntax is
given in the appendix to this chapter.

Structural aspects common to all styles are expressed by the generic schemas, whereas features that are
characteristic of a particular style are expressed by style-specific versions of the schemas. This is done by
specifying the parameters of the generic schemas and by adding style-specific declarations, constraints,
and operations. The resulting schema versions constrain the configuration of the elements that make up
an architecture. The ASDL schemas use a common formalism to describe both syntax and semantics of
architectures and styles. The use of Z gives the language a flexible and modifiable foundation. ASDL also
provides operations that support construction of a software architecture within a style.

The Z schemas of ASDL are similar to those used in Rice and Seidman [1994] to describe MILs.
Figure 109.9 shows the generic schema that describes ASDL templates. It provides a collection (library)
of templates that represent interfaces of components available for inclusion in a software architecture.
The schema parameters (Indices, Attributes, Parts) are used to customize the schema to describe a specific
style. The schema components define the template’s interface, which consists of a finite set of ports that
can be used for data communication or other relationships between components. The port-attr function
determines the characteristics of a port by giving it attribute values (taken from the style-specific parameter
Attributes) with respect to members of a set of indices (represented by the style-specific parameter Indices).
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Component DeliveryPort is
subtype CargoRouteEntity {int \and beh {

state {
cargo : \set Shipment;
selected : Integer;

}
invariant {

(cap >= 0) \and (cap < = max_cap);
connector RegConn is {filter no_filter)

}
interface {

prov ip_selshp: Select (sel: Integer);
req ir_clktck: ClockTick();

}
operations {

prov op_selshp: ;
let num : Integer ;
pre num <= #cargo ;
post ~selected = num ;

}
req or_clktck {

let time : STATE_VARIABLE;
post ~time = time + 1 ;

}
}

map {
ip_selshp -> op_selshp (sel -> num);
ir_clktck -> or_clktck () ;

}
}

FIGURE 109.8 C2SADEL component specification.

ASDL Library [Indices, Attributes, Parts]

interfaces : Templates >−|→ F1 Ports
port-attr : Ports −|→ Indices → Attributes
part : Templates −|→ Parts
interp : Templates −|→ Interpretations
Collection : F1 Templates

Primitives ⊆ Collection
Collection = dom interfaces = dom interp = dom part
disjoint ran interfaces
dom port-attr = ∪ ran interfaces
{dir, type} ⊆ Indices ∧ {in, out} ⊆ Attributes
∀p ∈ dom port-attr • port-attr(p).dir ∈ {in, out}

FIGURE 109.9 Z schema defining ASDL templates.
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interfaces(filter f ) = {p f , q f }
interfaces(split) = {ps , qs , rs }
interfaces(merge) = {pm, qm, rm}
port-attr(p f )(dir) = in; port-attr(q f )(dir) = out
port-attr(ps )(dir) = in; port-attr(qs )(dir) = port-attr(rs )(dir) = out
port-attr(pm)(dir) = port-attr(qm)(dir) = in; port-attr(rm)(dir) = out
interp(filter f ) = ∗(p f ? x → q f ! f (x) → SKIP)
interp(split) = ∗(ps ? x → (qs ! x → SKIP||rs ! x → SKIP))
interp(merge) = ∗((pm ? x → rm ! x → SKIP) (qm ? x → rm ! x → SKIP))
part(filter f ) = part(split) = part(merge) = filter

FIGURE 109.10 Pipe-and-filter interfaces.

The function part assigns each template to a style-specific category. The function interp defines a template’s
interface semantics by associating the template with a composition of guarded CSP processes [Hoare, 1985].
For example, if a template � has ports p and q with direction attributes in and out, respectively, then the
CSP process interp (�) = ∗(p ? x → q ! f (x) → SKIP) specifies that the template acts as a filter represented
by the function f .∗

Some templates are identified as primitive templates; these correspond to interfaces of software system
components that have been preloaded into the library. Collection represents the set of templates that can be
used to construct software systems. The members of Collection\Primitives are templates that correspond
to interfaces of encapsulated composite modules. Members of Templates\Collection can serve as reference
templates, which correspond to interfaces designed in a top-down fashion.

The schema constraints define the requirements needed for any style. For example, they require that
each template has a nonempty interface, a category assignment, and interface semantics; that the interfaces
of distinct templates are disjoint; that attribute values are defined for all interfaces; and that category and
semantics are given for each template. Furthermore, they require that dir and type, which give a port’s
direction and data type, are indices supplied for all styles, and that the only acceptable attribute values for
dir are in and out.

As an example, we will consider the pipe-and-filter architectural style (see also Allen [1997], Abowd
et al. [1995], and Shaw and Garlan [1996]). Our version of this style uses a filter component that applies a
function f to its input and produces an output, a split component that sends its input to each of its two
outputs, and a merge component that performs a nondeterministic merge of its two inputs. To specify
the interfaces of these components in ASDL, we define the schema parameters to be Indices = {dir, type},
Attributes = {in, out, float}, and Parts = {filter}. We then assume that (filter f , split, merge) ⊆ Templates
(where f is a member of a set that includes all of the filter functions needed by an application), and that
the schema components satisfy the requirements given in Figure 109.10.∗∗

Settings (defined in the Z schema of Figure 109.11) represent architectures that have been built by
instantiating templates as computational nodes. The nodes correspond to the components of a software
architecture. A node has external interfaces called slots that correspond to (and inherit attributes from)
the ports on the node’s underlying template. Slots can be labeled; shared labels are used to represent
relationships among nodes, such as data communication.

The schema components define the essential syntactic features of the nodes representing the components
of an architecture: the templates from which the nodes were instantiated, the node interfaces (represented

∗The process p ? x → q ! f (x) → SKIP receives x on channel p, sends f (x) on channel q , then terminates. The
operator ∗ indicates indefinite repetition of the filter process.

∗∗In the split process, the || operator indicates concurrency, so that the input of x on the channel ps is followed by
the output of x on channels qs and rs . In the merge process, the operator indicates deterministic choice, so that the
first of the channels pm or qm to receive x outputs it on channel rm.
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ASDL Setting [Indices, Attributes, Parts]

ASDL Library [Indices, Attributes, Parts]
node-parent : Nodes −|→ Templates
slots : F(Nodes × Ports)
slot-attr : Nodes × Ports −|→ Indices → Attributes
label : Nodes × Ports −|→ Labels
comp-expr : ProcessExpressions
semantic-descr : Labels −|→ SemanticDescriptions

slots = dom slot-attr
dom label ⊆ slots
dom semantic-descr = ran label
∀n ∈ dom node-parent •

node-parent(n) ∈ Collection ∧p ∈ interfaces(node-parent(n))
⇒ (n, p) ∈ dom slot-attr ∧ slot-attr(n, p) = port-attr(p)

FIGURE 109.11 Z schema defining ASDL schemas.

as ordered node–port pairs), and the interfaces’ characteristics and labels. Other schema components
contain information that can be used to determine the semantics of the architecture represented by the
setting. The semantic description mapping assigns a semantic abbreviation to each label used in a module,
and the composition expression specifies how the nodes in a setting are composed for execution purposes.
A composition expression is a CSP process in which node names are viewed as processes. For example,
it may specify that the nodes in a setting will be executed in parallel. The members of ProcessExpressions
are described in Rice and Seidman [1996]. The node constraints require that the slots representing the
interfaces of a node n consist of the pairs (n, p), where p is a port of node-parent(n), that the slot attributes
are inherited from those of the corresponding ports, and that all slot labels are associated with semantic
abbreviations.

Note that ASDL uses the Z and CSP formalisms orthogonally, so that there is no need to propose a
common semantic domain for the two formalisms. The use of CSP is confined to providing a process
algebra value for the comp-expr variable of the ASDL Setting schema and for the interpretation of each
template. The character strings assigned to these elements correspond to CSP process algebra expres-
sions.

The semantic abbreviation associated with a label represents a communication protocol, as well as addi-
tional style-dependent information. The set SemanticDescriptions contains abbreviations that correspond
to a variety of communication capabilities, and the mapping semantic-descr assigns an abbreviation to
each label in a setting. For example, the abbreviations uac and usc represent unidirectional asynchronous
and synchronous communication, respectively, and brod represents broadcast of input data. Each abbre-
viation a has a meaning [a] and a set of associated properties, including its text description. For example,
the meaning of usc is described by the CSP expression [usc] = ∗(in ? x → (out ! x → SKIP).

The associated properties may include an alphabet like {in, out} or an alternate specification of the
meaning, such as out ≤ in (each trace on out is a prefix of a trace on in). Other properties might include
timing information or a restriction on the buffer size for an asynchronous protocol. In some cases, the
meaning of an abbreviation is parameterized by a potential set of connections. For example, the meaning
of the broadcast abbreviation is defined by

[brod](S) = ∗(in ? x(outs !x → SKIP : s ∈ S))

The execution semantics of a module can be derived from the semantic interpretations of the templates
underlying the nodes, the composition expression, and the semantic descriptions of the labels that specify
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FIGURE 109.12 A pipe-and-filter architecture.

the connections between nodes. The ASDL Setting schema therefore contains the basic components and
the information needed to simulate the execution of the module.

To illustrate these concepts, we return to the pipe-and-filter style. Figure 109.12 shows a pipe- and-filter
architecture with four components: A sends its input to B and C, which are filters (using the functions
f, g , respectively) whose results are merged by D.

An ASDL description of this architecture corresponds to a setting that uses the nodes A, B, C, and D. The
function node-parent is defined by the ordered pairs (A, split), (B, filter1,1, f ), (C, filter1,1,g ), (D, merge).
The setting uses the following ten slots:

1 = (A, ps ) 2 = (A, qs ) 3 = (A, rs ) 4 = (B, p f ) 5 = (B, q f )
6 = (C, pg ) 7 = (C, qg ) 8 = (D, pm) 9 = (D, qm) 10 = (D, rm)

In the figure, Greek letters are used to represent slot labels, and shared labels indicate data communication
between slots. The function label associates labels with slots; it is defined by the ordered pairs (2, �),
(3, �), (4, �), (5, �), (6, �), (7, �), (8, �), (9, �). The semantic-descr function assigns the abbreviation usc
(unidirectional synchronous communication) to all four labels. The composition expression associated
with this setting represents the concurrent composition of its components.

The following four constraints are associated with this style:

� b ∈ ran label ⇒ | label (b)| ≤ 2
� ∀b ∈ran label • semantic-descr(b) = usc
� n ∈ dom node-parent ⇒ part (node-parent(n)) = filter
� ∀s , t ∈ dom label • label(s ) = label(t) ⇒ port-attr(second(s )).dir �= port-attr(second(t)).dir

The first three constraints require that no more than two slots can share the same label, that all labels
represent unidirectional synchronous communication, and that all nodes are instantiated from filter
templates. The final constraint states that if two slots share a label, the underlying ports must have the
opposite direction.

The ASDL Setting schema represents an architecture as a self-contained computational unit without
any external connections. Figure 109.13 shows the ASDL Unit and ASDL Boundary schemas that describe
these connections and the associated interface semantics. They include a set of virtual ports that represent
the public interfaces of the unit and a mapping that specifies the attributes of these ports. The mapping
virtual-port-descr assigns semantics to each virtual port in a unit. The connect mapping describes the links
between slots and virtual ports.

ASDL Unit imposes only a minimal restriction on the interface, which enforces consistency with respect
to the direction of data movement. Further restrictions are based on style-dependent information about
the desired behavior of units. For example, type-consistency requirements may be placed on the connect
mapping, and the virtual-port-descr mapping may specify broadcasting or multiplexing behavior for a
virtual port.
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ASDL Unit [Indices, Attributes, Parts]

ASDL Setting [Indices, Attributes, Parts]
ASDL Boundary [Indices, Attributes]
connect : Nodes × Ports −|→ FPorts
virtual-port-descr : Ports −|→ Interpretations

dom connect ⊆ Slots
∪ ran connect ⊆ virtual-ports
dom virtual-port-descr = virtual-ports
∀p ∈ virtual-ports • {interface-attr(p).dir} = {slot-attr(s).dir : p ∈ connect(s)}

ASDL Boundary [Indices, Attributes]

interface-attr : Ports −|→ Indices → Attributes
virtual-ports : FPorts

virtual-ports = dom interface-attr

FIGURE 109.13 Unit and boundary schemas.

α
β τ
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FIGURE 109.14 Multiplexing semantics in a unit.

Because ASDL operations can be used to add the boundary of a unit to the library as a template, units
provide powerful and flexible support for hierarchical descriptions of software architectures. The mapping
of slots to virtual ports specified by the connect mapping need not be one-to-one. A software architect
can use the virtual-port-descr mapping to specify the attributes of virtual ports and derive the semantics
of the virtual ports from information about the setting associated with the unit: the interpretation of the
templates used to instantiate the setting’s nodes, the semantic abbreviations assigned to slot labels, and the
setting’s composition expression.

Figure 109.14 shows an architecture that has been converted into a unit that uses a multiplexing seman-
tics. In this example, virtual-ports = {�, �} and the connect mapping is constructed from the ordered pairs
(�, �), (	, �), (
, �), and (�, �). Note that this mapping is not one-to-one. The semantics of the virtual
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ports are defined by

virtual-port-descr (�) = ∗(a ? x → b ! x → SKIP)

virtual-port-descr(�) =
∗(((r ? x → SKIP) (s ? x → SKIP) (m ? x → SKIP)) ; (t ! x → SKIP)

where a , b, r , s , m, and t are CSP channels corresponding to the slots and ports in the ASDL description.
ASDL contains a number of operations that support the incremental specification of software architec-

tures. These serve as guides for the design of style-dependent operations that are constructed by adding
new signatures and constraints to existing operations or by incorporating existing operations into a new
operation. The operations include setting operations to create and delete nodes and pseudonodes, assign
labels to slots, specify a composition expression, and select semantic abbreviations; interface operations to
specify virtual ports, attributes, links, and virtual port descriptions; an encapsulation operation to create a
new library template based on a unit; and operations that define the units needed to support a top-down
design methodology.

For example, the encapsulation operation ASDL External creates a new library template from an existing
unit type. The virtual ports of the unit type become the ports of the template, and the attributes of these
ports are derived from the unit’s interface. The template’s interpretation is derived from the interpretations
of the templates underlying the nodes, the composition expression, the abbreviations of labels, and the
semantics of the virtual ports. This represents a complex synthesis of the semantics of the entities associated
with the unit.

The new library template can in turn be used to create a node in another module. ASDL permits a style-
dependent interpretation of the extent to which the internal structure of the node is visible in the new
module. For example, if encapsulation requires that each virtual port is linked to a node in the underlying
unit, then one interpretation is that only the resources of the nodes linked to the port can be accessed
through the port. On the other hand, if encapsulation permits a virtual port with no links, then another
interpretation may allow characteristics of the node to be modified by using the port.

Defining Terms

Architectural analysis: Reasoning about descriptions of architectures and architectural styles.
Architectural style: A set of design rules that identify the kinds of components and connectors that may

be used to compose a system or subsystem, together with local or global constraints on the way the
composition is done.

Architectural view: A partial description of a software architecture that features architectural aspects
useful for specific purposes or for specific categories of users.

Architecture description language (ADL): Language designed for describing software architectures.
Component: Software architecture entity that abstracts a computational activity.
Connector: Software architecture entity that abstracts a relationship between components.
Functional properties: The semantics of a software architecture’s components.
Module interconnection language (MIL): A language that describes the properties of the interfaces be-

tween the modules of a software system.
Nonfunctional properties: Deal with an architecture’s reliability, robustness, ease of use, conformance

to standards, hardware requirements, and security.
Programming in the large: Building industrial-strength software systems.
Programming in the small: Development of small software applications.
Software architecture: An abstraction of a software system that allows a designer to ignore low-level

implementation issues, such as programming languages, hardware and device requirements, and
communication protocols.

Structural properties: The nature of the interactions supported by the architecture’s components.
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Further Information

An excellent source for the foundations of software architectures and architectural styles is Software
Architecture: Perspectives on an Emerging Discipline [Shaw and Garlan, 1996]. This book has a strong
research flavor and contains a good summary of early software architecture research. Although the Shaw and
Garlan book is an essential basic reference, its applicability to realistic industrial situations may be less clear.
This deficiency is remedied by Software Architecture in Practice [Bass et al., 1998], which provides a useful
bridge between software architecture research and industrial practice. It contains significant industrial
case studies and also deals with issues of architectural analysis and reuse. The recent book Documenting
Software Architectures [Clements et al., 2003] addresses the question of how software architectures should
be described to different communities of potential users. They advocate the explicit adoption of disparate
architectural views and discuss the use of styles within each view.

Software architectures play a critical role in the software life cycle, and the adoption of an architectural
perspective is now a recommended practice. This has been recognized in the recently adopted IEEE
Recommended Practice for Architectural Description of Software-Intensive Systems [IEEE, 2000].

A critical activity in the software life cycle is the evaluation of potential architectures. This topic is
treated extensively in Evaluating Software Architectures: Methods and Case Studies [Clements et al., 2002].
The book presents several architecture evaluation methodologies and illustrates them with case studies.

The use of architectural ideas in the design of software product families has received much attention in
recent years. Research on this topic has a strong industrial flavor. An overview of the area can be obtained
from the papers in Jayazeri et al. [2000].

Patterns are another way of capturing design knowledge, and they are often regarded as architectural in
nature. If code construction is regarded as a low-level endpoint of the design axis, architectural styles can
be found near the opposite endpoint. Architectures are close to styles, and patterns closer to construction.
A good survey of patterns and their relationship to architectures can be found in Buschmann et al. [1996].

The Software Engineering Institute maintains a useful bibliography on software architecture (http://www.
sei.cmu.edu/architecture/bibliography.html). The best place to look for current research on software
architectures is in the proceedings of special-purpose conferences. Of particular interest is the Work-
ing IEEE/IFIP Conference on Software Architecture, which tends to include both industrial and
academic papers (http://wicsa3.cs.rug.nl). Other, more general software engineering conferences that
usually include papers on software architecture are ICSE (International Conference on Software
Engineering, http://www.icse-conferences.org) and FSE (Foundations of Software Engineering, e.g.,
http://www.cs.pitt.edu/FSE-10).

Appendix: A Quick Introduction to Z Notation

The following discussion will introduce the reader to the basic elements of Z notation that are used in this
paper. A more complete treatment can be found in Spivey [1989]. Z is based on typed set theory and uses
schemas to define functions and types. A schema associates declarations of typed variables with predicates
that constrain their possible values. The simplest variable types name familiar sets such as the natural num-
bersN. More complex types are built using type constructors, which are analogues of familiar set operations:
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power set formation (P), products (·), and function space formation (→). A schema definition assigns a
name to a group of variable declarations and predicates relating these variables. It has the following form:

S

declarations

predicates

A schema S can be used as a type, and the notation w : S declares a variable w whose components are
declared in S. For example, if x is a variable declared in S, then w .x denotes the x component of w .
A schema definition may also use generic parameters X1, X2, . . . , Xn associated with the schema name:
S[X1, X2, . . . , Xn]. These parameters are set constants that can be used in the schema definition.

A schema S can be included in the declarations of another schema T , in which case the declarations of
S are merged with the declarations of T and the predicates of S and Tare conjoined. An inclusion of S in
T has the following form:

S

T
declarations

predicates

The schemas formed by merging the declarations of S and T are denoted by

S ∧ T if the respective predicates are conjoined
S ∨ T if the respective predicates are disjoined

Schema definitions may be used to specify operations on a state specified by another schema. In this
case, the following conventions are used for variable names:

undashed state before ending in ? inputs
dashed’ state after ending in ! outputs

Given a schema S, S′ is the schema obtained by renaming all variables declared in S with dashes’.

N Set of natural numbers {0, 1, . . . }
Z Set of integers {. . . , −1, 0, 1, . . . }

Given a set S

#S Cardinality of S
PS (FS) Set of all subsets (all finite subsets) of S
P1S (F1S) Set of all nonempty subsets (all nonempty finite subsets) of S

Given G ∈ PS

∪G Union of all subsets in the family G
disjoint G Predicate which is true if and only if G is a pairwise-disjoint family

Given sets S and T

S × T Cartesian product of S and T
S \ T Difference of S and T
∃x : T •P There exists x of type T such that P holds (a unique x if ∃1 is used)
∀x : T •P For all x of type T , P holds
{x : T | P } Set of all x ’s of type T such that P holds
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Given sets S and T

S ↔ T Set of all relations from S to T
S → T Set of all total mappings from S to T
S −|→ T Set of all partial mappings from S to T
S −||→ T Set of all partial mappings from S to T with finite domains

The additional symbol > on the left end (right end) of an arrow denotes a one-to-one (onto) mapping.
For example, ←||→ denotes a one-to-one partial mapping with a finite domain. All the function operators
are right-associative. For example, f : S → T → V means that for each x ∈ S, f (x) : T → V . In this
case, we write f (x).y instead of f (x)(y).

Given f : S −|→ g

dom f = {x ∈ g : f(x) is defined}
ran f = {f(x) ∈ T : x � dom f}

Given f : S −|→ g and g −|→ V

g o f : S −|→ V composition of f and g with dom (g o f) = {x ∈dom f : f(x) ∈ dom g}.

Functions can also be defined by lambda abstraction, as in

square == �n : N • n ∗ n

The domain is the set of natural numbers, and the expression defines the function.
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110.1 Introduction

Software development is a complex problem-solving process with various interdisciplinary variables driv-
ing its evolution. Such variables are either problem-related or solution-based. Problem-related variables set
the criteria for solution characteristics and help designers tailor solutions to specific problems. Solution-
based variables explain current options, assist in future forecasting, and facilitate scaling solutions to
problems. The issue of whether to find generic prescriptions to common problems (i.e., bottom-up gen-
eralization) or derive domain-dependent solutions to specific problems (i.e., top-down specialization) is
debatable.

One viewpoint considers modern software engineering to be a standardized response that uses generic
methodologies and strategies, as opposed to the nonsystematic approaches that characterized earlier soft-
ware development. Standardization implies the use of generic rules, procedures, theories, and notations
that mark a milestone in the development of any discipline. When standardization came, software de-
velopment witnessed a paradigm shift from trial-and-error experimentation to scientific maturity, from
differing representation and implementation of concepts to unified modeling and cross-platform inde-
pendency, and from vague economic considerations to well defined, software-driven business models. The
competing viewpoint of “one size fits all” has not proved to be practical in real-world software development
(Glass, 2000). There is no one methodology appropriate for every case, no strategy that works perfectly for
every problem, no off-the-shelf-prescriptions that can be applied directly without scalability, tailorability,
or customization. Even specific approaches that fit certain situations do not necessarily fit them all the
time, because change is the only constant in contemporary business. Evolving needs accompany innova-
tion and emerging technologies. It can be argued that a balanced approach between generalization and
specialization can be adopted to achieve effectiveness in software development.
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This chapter addresses the notion of specialized system development. The field of system specialization
has been overlooked in the software engineering literature since the discipline was formally launched. Also,
generic software development had only provided a weakstrategy (Vessey and Glass, 1998) to solve problems
because it only supplies guidance for solving problems and not actual solutions to problems at hand. Scal-
ability, tailorability, and specialization have become relevant issues in the software industry and software
engineering research. Even general applications are not actually generic. Many current applications sup-
port customization features. Additionally, these systems are released in various modes, which range from
standard to professional to enterprise editions, suiting a diversity of needs and problem complexity. Such
applications also evolve over time to reflect changes in business requirements and technological capabilities.
Subsequent sections of this chapter define specialized system development, discuss its drivers, present its ad-
vantages and disadvantages, and explore the types of specialized system development and its categories. We
also consider the need for specialized system development and how that can be mapped to team structures.

110.2 Principles of Specialized System Development

According to the Merriam-Webster dictionary, to specialize is to concentrate one’s efforts in a special activity
or field or to change in an adaptive manner. Concentration leads to more attention to detail and presumably
enables more efficient problem solving. Specialization links theory to practice and makes it more mean-
ingful. Generally speaking, specialized system development is about developing software systems with
focus. The focus may be on the application domain, a certain phase of the development cycle, or a specific
system development methodology. An example of application-domain focus is software development for
pervasive computing, including wireless and portable systems. An example of development-phase focus
is special emphasis on project management, requirements analysis, or architectural design, as opposed to
generic knowledge in software engineering. An example of methodology focus is systems development
using structured or object-oriented strategies. However, specialization in methodology spans a wider ar-
ray of approaches and tools. This includes software development process models (i.e., problem-solving
strategies), CASE tools, and implementation techniques. Application-focused software development is the
most frequently used definition for specialized system development in the current software industry.

Application-focused development can be classified into two categories: application-oriented and
infrastructure-oriented. Each of these two categories can have a problem focus or a solution focus. Problem
focus can be based on the type of industry involved or the application domain. Solution focus can be based
on custom development, package development, or development aid (Glass and Vessey, 1995).

110.2.1 Roots of Specialized System Development

The history of specialized system development is tightly coupled with the evolution of computer hardware
and technology advancement.

110.2.1.1 Domain-Dependent Era (Pre--Software Development Methodology)

During the period of 1955 to 1965, computer hardware was application-dependent. It was virtually im-
possible to develop business and scientific applications on the same machine. Medical applications and
unusual applications were two examples of the distinct focus of application development during this era.
Problem-oriented languages, such as Fortran, COBOL, and ALGOL, were developed to translate old soft-
ware to be compatible with the requirements of new computers. Domain-specific focus was the major
driver in building successful software systems. New disciplines emerged to support these systems, such as
numerical analysis and information retrieval (Vessey, 1997).

110.2.1.2 Domain-Independent Era (Early Software Development Methodology)

This era comprised the period between 1964 and 1980. In 1964, the IBM 360 was introduced, including the
lower-midrange model 40 and the model 67, shipped with hardware to support virtual memory. The IBM
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360 combined scientific and business applications in one machine. The sociology of software development
was strongly influenced by the 360’s ability to end the separation between scientific and business appli-
cations. Generic applications were possible when the software business became independent of hardware
vendors. Competitive advantage in software development became directly proportional to the interde-
pendency of standards, hardware, and platforms. This era witnessed many attempts to institutionalize
application-independent software development strategies (Vessey, 1997) and led to the building of a solid
foundation for the next era of methodology-intensive software development.

110.2.1.3 Generic Applications Era (Methodology-Intensive Software Development)

The period of 1980 to 1995 witnessed the birth and evolution of desktop PC computing and laptop
computing. With the availability of computers and the high degree of usability, user involvement became
more dominant, the availability of technology facilitated automation efforts in software implementation,
and nontechnical users became active participants in the process (Glass, 1998). User-friendly GUIs took
over job control language (JCL) taking human–computer interaction (HCI) to a new level. Some attempts
at developing application-dependent software (such as fourth-generation languages, rule-based languages,
and simulation languages) were also carried out (Vessey, 1997).

110.2.1.4 Return to Application-Focused Development (Software Development
Post-Methodology)

From 1995 to the present, the evolution of networked hardware architecture has been dominant. Developing
Web-based applications marked a milestone in this era, along with the emergence of Web-driven tools and
programming languages (i.e., HTML, Java, JavaScript, XML, VML, etc.), the evolution of friendly Web
interfaces through Internet browsers and e-mail agents, the emergence of Web-based software engineering
as a software development methodology, the increasing demand for software that balances speed and
quality, and the synchronization of business processes and software evolution.

110.2.2 Generic vs. Specialized Development

The shift from domain-specific computers to application-independent ones was an important event for
software development. The subsequent advancement of application-independent computers into desktop
and notebook computing was another milestone, which marked a shift toward generic infrastructure
systems, applications, and components with notable advantages such as the following:

Portability — Software can be used virtually anytime and anywhere because of the development of
generic Web-based downloading and installation protocols.

Compatibility — One operating system can host a vast number of applications, regardless of their ven-
dors. Generic operating systems are a central repository for shared components across applications.

Reusability — One application or one module can be used across computer models, organizations,
and user groups. It can be distributed over an organizational network or the World Wide Web. It
can also be reused to develop new releases of software implementations. Furthermore, with few
modifications through built-in preferences or options, the same application can be customized or
tailored to a variety of specific needs.

Ease of training — Generic applications are easier to learn because of their availability, and training
material is inexpensive (or even free), due to the use of mass production techniques.

Cost-effectiveness — Because operational costs are generally lower with mass production and sales
volume is usually high, products can be sold at competitive prices to the end user.

Generic applications also have disadvantages worth noting. For example, such applications are based
on the assumption that there are no significant differences among individuals and/or organizations that
require special tailorability or scalability. This assumption applies also to generic methodologies and
strategies in software development. These methodologies are rarely based on the type or size of the
project or on technology environments and organizational settings. Such methodologies are considered
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FIGURE 110.1 Generic and specialized software development in the problem-solving context.

one-dimensional approaches, because they often do not mirror a particular organization’s underlying
social, political, and organizational development dimensions (Avison and Fitzgerald, 2003). Generic ap-
plications also assume that businesses or individuals should be able to adapt to the infrastructure and
functionalities of generic applications with limited room for changes. This assumption can be true within
the same application domain, but it may be untrue for another, causing extreme ineffectiveness.

Additionally, the assumption that business processes can easily be changed to fit a generic software
product is unrealistic and costly. Diversity of goals, market demands, stakeholder requirements, archi-
tectural specifications, nonfunctional requirements, and organizational cultures across business domains
and specializations makes generic development strategies impractical. For some organizations, adopting
a specific methodology may not lead to the desired result, and it can lead to rejecting methodologies
altogether (Avison and Fitzgerald, 2003). Agile software development may be viewed as a response to this
difficulty.

110.2.3 The Context of Problem Solving in Specialized System Development

Because software development essentially aims to solve problems, it is important to view specialized system
development in the problem-solving context. Basically, solving problems involves two key elements: the
ability to comprehend the problem and the capability to solve it. Hence, specialized system development is
either problem-focused or solution-driven (see Figure 110.1). Because problem types and solution strate-
gies in software engineering vary, effective understanding of their diversity is a precondition to successful
specialized system development. In fact, this diversity is a major driver of specialized development, because
differences are the catalyst for any specialization.

Relevant challenges for the developer include understanding how specialization, in identifying problem
characteristics, can help to evaluate existing options, select the most proper options, and use domain
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analysis and requirements engineering to develop effective solutions. How can software products or so-
lutions be adequately used, reused, customized, personalized, reengineered, or redeveloped based on
application-driven or domain-specific specialization? How can specialization in problem, method, prod-
uct, or domain analysis assist in proper selection or successful construction of computer-based solutions
that utilize suitable methods, process models, techniques, and tools?

Careful examination of problem and solution diversity reveals three key drivers for specialized system
development: characteristics of the system to be developed (as well as characteristics of the system’s
anticipated users); solution-driven capabilities, experience, and knowledge; and characteristics of system
developers.

110.2.3.1 Characteristics of the System to Be Developed

This is a problem-focused category. Diversity of software systems in terms of size, complexity, time con-
straints, scope, underlying technology, business goals, and problem environment are its most critical
drivers. Problems range from structured, at the operational levels of organizations, to semistructured
at the tactical level, to ill structured at the top management or strategic level (vertical specialization).
Problem specialization can be between organizations in the same industry, across industries (external
horizontal specialization) or within the same organization across its various functional departments or
key business processes (internal horizontal specialization).

110.2.3.2 Characteristics of System’s Anticipated Users

This is also a problem-focused category. Some of the drivers in this category are age considerations, gender
considerations, purpose in using the system (i.e., personal vs. business users), user background (i.e.,
technical vs. nontechnical users), and user environment. User environment includes, but is not limited to,
cultures, languages, geographic locations, technical resources, financial resources, human resources, and
legal and ethical issues. Each of these creates certain needs in systems development and therefore triggers
specific specializations in responding to these requirements.

110.2.3.3 Solution-Driven Capabilities, Experience, and Knowledge

System specialization under this category is based on tools and resources, rather than on application
domain. This includes capabilities and experience in project management tools, requirements analysis
techniques, architectural models, user interface approaches, database management strategies, implemen-
tation languages, development tools, development methodologies, and process models. These capabilities
affect numerous specializations in the solution area.

110.3 Application-Based Specialized Development

The convergence of three traditional computing specializations — personal, networking, and embedded —
produced a new computing era referred to as pervasive computing. Mobile computing, wireless devices,
PDAs, Pocket PCs, and Tablet PCs are all examples of pervasive computing products. Software applications
are important components of these products, and the distinct nature of these applications brings a new
set of challenges to software development.

110.3.1 Pervasive Software Development

Pervasive applications can be distinguished by the following characteristics: ubiquity, interconnectedness,
and dynamism. These applications strive to be embedded, distributed, nonintrusive, and cost-effective
(Ciarletta and Dima, 2000). This implies that software economics, system architecture, and security are
significant issues in pervasive software engineering. A conceptual model is suggested to highlight the
aspects of pervasive system development in which four layers have been identified: physical, resource,
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TABLE 110.1 The Roles of Pervasive System Development Layers

Layer Rationale Software Development Ramifications

Physical The flow of control in pervasive applications may
depend on signals received from or by the user’s
physical body.

Excellent software architecture is ineffective in
pervasive devices, unless it is well supported by
hardware design that mirrors physical
characteristics of humans.

Designing effective hardware architectures is crucial
to software design because software effectiveness is
dependent on hardware usability and hardware is
irreplaceable (in contrast with desktop computing).

Resource Represents the infrastructure of pervasive
software applications (operating systems, logical
devices, system API, user interface, network
protocol).

ROM-based operating systems should be reliable
with early releases because it will be very costly to
make any upgrades thereafter.

System resources must be matched to user goals and
needs.

User interfaces must be intuitive and consistent. They
must accommodate users’ language and physical
limitations.

Networking features should be automatically
available, self-configuring, and compatible with
existing technology.

System storage must enable users to access, retrieve,
and organize information in a way that suits their
requirements.

Execution environment and volatile memory should
be responsive and provide both speed and sense of
control via multithreading and multitasking.

Abstract Represents the direct software application that
the user will use.

Maintaining compatibility between users’ mental
model expectations and application logic “state.”

Shorter time frames are available to pervasive system
users for learning about the system, compared with
desktop users.

More difficult physical conditions are encountered by
mobile users of pervasive systems.

User involvement and participation is much more
critical in pervasive applications than in traditional
applications.

Intentional Represents user goals and purposes in using the
pervasive system.

Analyzing the system to determine user goals and
designing the system to fulfill these goals.

abstract, and intentional (Ciarletta and Dima, 2000). Table 110.1 describes the roles of these layers in
specialized pervasive system development.

A framework of four levels can provide a sound process for developing effective mobile commerce
(m-commerce) applications (Varshney and Vetter, 2001). These four levels are as follows:

M-commerce applications — These modify e-commerce applications for a mobile environment.
Wireless user infrastructure — New m-commerce applications should support the capabilities of user

infrastructures. For example, m-commerce applications must be effective for such mobile devices
as PDAs and cell phones.

Mobile middleware — The new m-commerce applications must have better response time and relia-
bility when deployed, because the middleware will be used to connect e-commerce applications to
different wireless networks.

Wireless network infrastructure — Networking requirements must be fulfilled by the m-commerce
applications being deployed. Such requirements include quality of service, network reliability,
location management, roaming across multiple networks, and multicast support.
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Effective m-commerce applications can be deployed if network reliability and redundancy are increased.
Furthermore, creating m-commerce applications requires unique knowledge and needs-specific network-
ing support to create effective applications (Kalakota et al., 2000), which includes wireless quality of service
(QoS), efficient location management, and reliable and survivable networks.

110.3.2 Real-Time Software Development

Real-time software development originated in the 1970s and continues to evolve today. The development
of real-time systems requires consideration of three basic issues (Felder, 2002): complex timing (at the
higher requirements specification levels), resource constraints (at lower design levels), and scheduling
constraints (at lower design levels).

Gaulding and Lawson (1976) describe a disciplined engineering approach to real-time software devel-
opment with a focus on a process design methodology. The basis for this approach is a process performance
requirement, a document describing the software interfaces, the software functional and performance
requirements, the operating rules, and the data processor hardware description. The goal of process
design engineering is the development of an automated approach to the evolutionary design, imple-
mentation, and testing of real-time software. Gaulding and Lawson define the crucial aspects of effective
real-time software development to include four important components:

Transformational technology — Enables traceable transformation from functional requirements to a
software structure for a given computer

Architectural approach — Requires top-down design, implementation, and testing techniques sup-
ported by a single process design language

Simulation technology — Provides a capability for evaluating trial designs for real-time software
processes

Supporting tools — Automate such functions as requirements traceability, configuration management,
library management, simulation control, and data collection and analysis.

An early software development life-cycle method for real-time systems was proposed by Gomaa (1986).
This method attempts to tailor generic software development methodology to reflect the special needs of
real-time software development. Table 110.2 describes this method, its phases, and its applications.

110.3.3 Web-Based Software Development

Web-based software development is growing at a faster rate than any other domain. Software systems
with Web capabilities can maximize the business added value more effectively, with their ability to reach
customers and partners and to enrich the business process with information (Evans and Wurster, 1999).
Three criteria to assess business value in IT-based systems are productivity, business profitability, and
consumer surplus (Hit and Brynjolfsson, 1996). Web applications extend traditional business goals to
encompass measures of customer satisfaction, internal processes, and the organization’s innovation ac-
tivities. These operational measures affect organizational financial performance (Der Zee and de Jong,
1999). Efficiency, quality, market share, and penetration have emerged as important measures and goals
of business (Singleton et al., 1988) that can be improved by Web-based systems. These influences have
motivated industry to integrate Internet/intranet information systems in their businesses and adopt new
management techniques to align new technology with the organizational structure.

110.3.3.1 E-business Software Systems

There are now more demands on quality and reliability for Web-based software development than ever
before. Successful configuration of Web applications requires special attention to several interrelated
strategies that leverage Web engineering to the level of competitive advantage. Development teams, legacy
systems, value chain, and business integration and management structures drive these strategies.
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TABLE 110.2 Life-Cycle Phases for Real-Time Software Systems

Phase Phase Definition Phase Application

Requirements analysis and
specification

As in other approaches, user
requirements are analyzed,
and system specifications
are formulated to elaborate
on these requirements.

State transition diagrams are used to describe the
different states of the system to the user.
Object-oriented UML-based state transition diagrams
carry out this technique more effectively.

Any operator interaction with the system should also be
explicitly specified.

Throwaway repaid prototyping techniques have proved
to be extremely effective in requirements analysis for
real-time systems.

System design While the system is
structured into tasks as in
other software systems,
real-time systems are
designed with a specific
focus on concurrent
processes and task
interfaces.

The asynchronous nature of the functions within the
system is a key characteristic that distinguishes
decomposing real-time software systems into
concurrent tasks.

Data flow diagrams and event-trace diagrams are
effective techniques in mapping this phase.

Task design Each task is structured into
modules, and module
interfaces are defined.

Task-structure charts with intensive project and team
management elements are essential to carrying out task
design efficiently.

Module construction Detailed design, coding,
and unit testing of each
module are carried out.

This is similar to module construction in other system
development approaches.

Task and system integration Modules are integrated and
tested to form tasks, which
in turn are gradually
integrated and tested to
form the total system.

Incremental system development is used to achieve task
and system integration.

System testing The whole system or major
subsystems are tested to
verify conformance with
functional specifications.
To achieve greater
objectivity, system testing
is best performed by
independent test teams.

Automated testing is widely used for real-time systems.

Acceptance testing This is performed by the
user.

Extends user involvement to the validation and
verification stages after system delivery.

110.3.3.1.1 Skills, Structure, and Management of the Development Team
In Web-driven software development projects, skillful staff can significantly boost performance. Training
programs and availability of necessary resources have a strong influence on the quality of e-business appli-
cations, reducing the development time for tailoring solutions to application needs. Effective management
can create the right team structure and the necessary synergy from diverse abilities.

110.3.3.1.2 Legacy Applications
The scope and domain of legacy systems shape the strategies needed to solve e-business software problems.
The negative correlation between organizational complexity and the impact of technical change is a
disputable one (Keen, 1981), because the more complex the organization, the more ill structured its business
problems are (Mitroff and Turoff, 1973). Even though this influences the ability to tackle such problems
smoothly, information technology enables a complex organization to redesign its business processes so
that it can manage complexity more effectively (Davenport and Stoddard, 1994).
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110.3.3.1.3 Value Chain and Logistics Management
Value chain is the set of activities business requires to achieve its objectives, by adding values as activities
proceed from one phase to another. E-business applications utilize Internet technology to cover products
and services that require integration of business processes, the logistics of end users, and original suppliers.
Effective management of the entire process can add considerable value to consumers by organizing,
coordinating, and controlling supply chain activities and logistics (Turban et al., 2000). This defines
certain criteria for effective Web-based development, which encompass flexibility, quality, dependability,
agility, and efficiency. Optimality can be assessed in terms of delivering the right product at the right time
at each level of the supply chain (Vokurka et al., 2002). The value chain concept can be further utilized
to build decision support systems that enhance the decision-making process at the tactical and strategic
management levels (Haavengen et al., 1996). Also, electronic product development (EPD) is another aspect
of e-business growth that relies on a holistic perspective of the entire product value chain (encompassing
customers, designers, suppliers, manufacturers, and logistics providers) to develop more successful mass
customization (Helander and Jiao, 2000).

110.3.3.1.4 Aligning E-business Applications with Organizational Goals
E-business solutions can effectively serve organizational goals and marketing requirements. Strategies
that integrate the Internet and traditional advantages are expected to create potential advantages for
existing corporations (Porter, 2001). E-business software systems rely on both the internal preparation
of the company and the readiness of its customers and suppliers to engage in electronic interactions. By
committing resources to the business problem, management can create a value driver that boosts business
readiness for e-commerce challenges (Barua et al., 2001). These e-commerce solutions link customers,
suppliers, partners, and interorganizational departments in one or more unified value chains. If these links
are not well managed and efficiently aligned in synchronized frameworks, delays will occur and costs will
exceed profits, resulting in financial loss and customer dissatisfaction.

Other issues may have an indirect effect on the success of e-business applications. These are supply chain
management (SCM) and enterprise resource management (ERM), which can help explain the impact of
legacy business applications on the success of e-business development. Better understanding of customer
and supplier needs, and the effect of current business processes on the overall methods of supply chain
and resource management, can lead to flexible and manageable utilization of information technology to
help reengineer business processes (Daoud, 2000).

110.3.3.2 Object-Oriented Development for Web Applications

Gellersen and Gaedke (1999) propose a Web composition model that defines an object-oriented ap-
proach to Web development based on Web implementation models. This model was developed to provide
developers with the capabilities of object-oriented concepts, such as reusability, inheritance, improved
modifiability, and extensibility. Conallen (1999) addresses object-oriented Web application architecture
through a UML-based approach. This approach aims to facilitate managing complexity for Web appli-
cations and to enable enhanced reusability. The approach, which works in conjunction with CASE tool
support, integrates three models of Web application architecture: business model, navigation model, and
implementation model.

110.3.3.3 Customizable Web Applications

Several approaches to modeling and implementing customizable Web applications have been proposed.
These approaches all share those characteristics of Web development environments (Kappel et al., 2000)
that explicitly consider user context for customization. This view reflects the need for personalization, both
for individuals and for classes of users, and it includes network and device contexts. Network context is
related to network settings; device context is based on multidelivery of different devices or classes of devices.
However, they have different degrees of location context (related to mobile computing and portability)
and temporal context (based on time constraints).
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TABLE 110.3 The Four Generations of Information Systems Security Approaches

Generation Drivers Strategies Techniques Problems

First (early 1980s) Generic thinking
Common sense

principles

Linking
requirements
(what to do) with
existing
capabilities (what
can be done)

Risk analysis Gaps between generic
strategies and
special needs

Second (late 1980s) Some focus on
organization
requirements

Formal methods Control points
and checklists

Considering natural,
functional, and
technical
requirements while
ignoring the social
nature of
organizations

Third (early 1990s) Business processes
Focus on specific

organization
requirements

Information
systems
modeling

Responsibility
modeling

Security semantics
Logical approach
ERM, DFD, OO

and business
process modeling
for security

Not enough focus on
social requirements
of organizations

Fourth (late 1990s to
present)

Socio-technical
design

User participation
Strong focus on

specific
organizational
requirements

Domain-specific
and application-
driven design for
information
systems security

Responsibility
modeling

Viable
information
systems

Still in its first phases

110.3.4 Security-Driven Software Development

Software systems have evolved into global networked infrastructures, multidimensional databases, and
enterprise data warehouses that interconnect individuals, businesses, organizations, competing supply
chains, numerous mobile and wireless applications, and even countries. The software engineering literature
typically includes security as one of the measures of quality and reliability in software products. Moreover,
the software engineering field addresses the security issue as a part of the risk analysis process, in order
to minimize the likelihood of intrusions, attacks, hacking, or fraud in information systems. The issue of
security in contemporary software applications is a critical component of business survival. There is a need
to protect organizational strategic assets, such as information. In e-commerce, for example, customers,
who are more aware than ever of the ramifications of unsecured personal or private information, tend to
trust businesses with sufficient security measures, policies, and standards.

The area of information systems security has evolved across paradigms and strategies (Siponen, 2002).
These range from the generic, based on common sense, to the specific, based on organizational culture and
needs, as summarized in Table 110.3. Security-driven systems are receiving greater attention in current
software development strategies, and the reengineering of existing systems adds security features, builds
security-based applications to ensure security in systems (such as antiviruses and firewalls), adds features
that enhance individuals’ privacy, and builds surveillance-based applications that can help detect or protect
against crime and terrorism. Computer vision, image processing, and multimedia-based technologies play
a significant role in these applications.

As with all forms of software development, the design of such systems is not without challenges. The
trade-off between open communication channels and the potential for security threats through these same
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FIGURE 110.2 Security-driven requirements analysis process.

channels is one example. The remaining parts of this section present a framework for dealing with security
considerations in the software development process, particularly in terms of the analysis and design of
such systems.

110.3.4.1 Security-Driven Requirements Analysis

Because a large portion of software engineering literature was developed before the Web era, investigating
vulnerabilities was rarely addressed adequately. Web-driven applications and infrastructures have neces-
sitated a change. For example, in terms of security, while Web connectivity increased access to public
information, it exposed the very same information and information systems to more risks and vulnerabil-
ities (Deswarte, 1997). In some software engineering methodologies, security requirements are addressed
in the analysis phase as nonfunctional requirements, because software systems must comply with internal
and external security standards. Sommerville (1996) classifies security requirements as external, nonfunc-
tional safety and privacy requirements. This view is true from a categorization perspective, but it needs
to consider that even functional requirements should be guided by security metrics; otherwise, they may
increase system vulnerabilities. Additional requirements or flexible requirements could expose the system
to unexpected risks (Smith, 1991; Pfleeger, 1997).

Security-driven requirements analysis involves defining security objectives, setting their metrics, iden-
tifying potential risks, investigating vulnerabilities, creating what-if scenarios, reviewing current require-
ments, and reformulating requirements to reflect the input of the analysis phase. Analysis output becomes
the guideline for designing security-driven solutions. Additional details are shown in Figure 110.2.

Security objectives are usually based on organizational standards, underlying technology, and the mag-
nitude of the anticipated threat. Because security breaches are highly unpredictable and their nature and
scope can change over time, organizations must adapt to new threats and be able to adjust their objectives
to meet the demands of evolving challenges. Once objectives are determined, quantitative and qualitative
measurements should be derived to establish evaluation metrics to verify quality of software products in
terms of security requirements. The major task in security-driven analysis is to identify potential security
risks. Risk assessment is essential, because an organization may be attacked from both inside and outside
its network (Philips and Swiler, 1998).
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Identifying potential security risks involves investigating system vulnerabilities. Vulnerabilities can be
attributed to intentional or unintentional factors. Unintentional factors are related to human mistakes,
exceptional hazards in the environment, system failures, gaps in hardware or software design, or bad
requirements specifications. While external factors contribute to the existence of vulnerabilities, it is the
analysis, design, implementation, and usability of the system that enable the vast majority of security
threats in most organizations. For example, a problem in data collection, data entry, data distribution,
referential integrity, or authorization can result in breaches that put data into risky situations. The growing
concern about infrastructure vulnerabilities, where more damage can be done with a keyboard than with
a bomb (Baskerville, 1993), is an important issue for organizational management. Tracing and tracking
leakages, security gaps, and security-related problems across the software development process are ways
to ensure security in software systems. The traceability process shown in Figure 110.3 offers a strategy for
a software engineering approach to system security via traceability analysis.

Intentional factors that threaten system security include data theft, data abuse, source code theft, delib-
erate data manipulation, data tampering, malicious damage, virus and attack destruction, cyber crimes,
terror attacks, and other miscellaneous computer crimes. Computer crimes range from using the computer
or computer network as a target, to using the computer as a medium (i.e., giving misleading information),
to using the computer as a planning or deception tool (Turban et al., 2002). One of the current and seri-
ous challenges of information systems is to discover how information and communication technologies
can contribute to public safety (Shneiderman, 2002). Recent efforts focus on enhancing security at the
technical level (i.e., network-based security), while paying some attention to security at the analysis and
architectural levels. Antiterror system development relies not only on solution-focused capabilities but
also on profound comprehension of the problem domain by studying the attacker’s behavior (Erland and
Olovsson, 1997). System vulnerabilities or security gaps in any information system provide opportunities
to carry out attacks or steal critical information. Identifying and securing these gaps will minimize potential
risks. Holmes (2001) points out the need to assess system security breaching motives in order to protect
and then manage the system’s infrastructure according to the vulnerabilities of those motives. Salenger
(1997) relates the level of organizational Internet security to the relative “functional uses” of the Internet.
Engineering secure systems requires managing infrastructure vulnerability (Demuth and Rieke, 2000).

Three models suggested in designing a secure environment (Salter et al., 1998) are the adversary model,
the vulnerabilities model, and the methodology model. The adversary model includes an understanding
of the motives for threat potentials: what they can do, what they are willing to do, and what they want to
do. The vulnerabilities model suggests three steps for any successful attack: analyze the targeted system to
find weaknesses, gain access quietly, and execute the attack. The methodology model categorizes attacks
based on their characteristics and aims to find the best protective countermeasure. Although the adversary
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model is based on information gathering, the vulnerabilities model is driven by risk analysis, and the
methodology model is related to response procedure and recovery.

110.3.4.2 Security-Driven Systems Design

Designing security-focused solutions for software systems can be done at two different levels: conceptual
and technical. The conceptual level provides the architectural foundation for the technical level. The key
concept for security-focused architectures is defense strategies. The ability of a software system to withstand
threats is tightly coupled with its capability to reduce vulnerabilities and provide protection shields that
prevent, eliminate, or deal effectively with breaches and attacks. Figure 110.4 depicts this concept as a
seven-layer conceptual model for defense strategies in security-focused system design.

In this model, five key defense strategies — prevention control, detection, limitation, recovery, and
correction — can be used separately or together to minimize system vulnerabilities or weaknesses (Turban
et al., 2002). Prevention control is the most effective strategy, whether it prevents human error, external
attack, or unauthorized use. Access control also plays a significant role in this defense strategy. Figure
110.5 provides a basic taxonomy of various types of security controls in software systems. An intrusion
detection system (IDS) is a system that can distinguish authorized uses, misuses, and abuses of computers,
either by authorized users or by external perpetrators. Intrusions can be classified into three categories:
single intruder, single terminal (SIST); single intruder, multiple terminal (SIMT); and multiple intruder,
multiple terminal (MIMT) (Puketza et al., 1996).

Object-oriented and component-based architectures have proved to be maintainable structures, because
they allow easy replacing of defective components. Distributed object architecture and design standards
provide an adequate level for generic distributed applications. But these are only the first step in building
application-specific software architectures for achieving overall system development objectives. Although
commercial enterprise application integration (EAI) tools and workflow management system (WFMS)
products can help advance basic distributed standards to the commercial level, they are still far below
the mission-critical needs of business and information security processes. System designers should em-
ploy security solutions that reinforce each other, define relationships based on trust, and use protective
countermeasures to prevent attacks.

The effectiveness of database and network design plays a crucial role in reducing system vulnerabilities.
For instance, cryptographic protocol design is frequently cited in the literature as a source of distributed
systems vulnerabilities. Yet, analysis and design techniques have proved useful in detecting protocol vul-
nerabilities (Stubblebine and Wright, 2002).
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Cybenko and Jiang (2000) discussed the vulnerabilities of the Internet and proposed a six-stage pro-
tection process to counteract malicious uses. Information-gathering techniques are the first essential step,
and they include intelligence reports, unusual-incident analysis, and automated information harvesting
from the Web and news services. The second essential step is a thorough risk assessment of the current
system to find vulnerable areas. This risk assessment includes modeling an attack, modeling failure of the
main system, and modeling subsidiary failures due to main system failures. The third step is interdiction,
which includes being able to use current prevention methods that are already available. The fourth step
is detection of attacks through early warning systems and monitoring resources. Monitoring subsystems
can take actions while an attack is underway, whereas a warning system can attempt to prevent an attack
before it happens (Salter et al., 1998). The fifth step is implementing the proper response procedure once
an attack has been acknowledged. Response procedures, which Cybenko and Jiang call forensic challenges,
can only be implemented when an attack is already underway. Once an attack is detected, the system
should be able to trace the attack. The final stage in Cybenko and Jiang’s approach is recovery, which
includes learning from the attack and documenting its characteristics for future reference in a knowledge
base.

110.4 Research Issues and Summary

The area of specialized system development can be characterized as new, huge, and crucial. This field is
evolving as the importance of scalability and tailorability in software development, as opposed to generic
strategies and approaches, is realized. The theoretical foundations of specialized system development
will continue to evolve and provide a roadmap for new research and development. This will provide
new challenges and opportunities to the software engineering community, because specialized system
development is not only new but also critical for many contemporary software applications.

An important consideration is that future research and development of specialized systems concerns
the government, industry, and academia alike. The government’s role in information decryption on the
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Internet is crucial (Fox, 2001). For example, some of the intelligence issues and policies to be further
addressed (Artz, 2001; Wilson, 2000; Zorpette, 2002) include the human role in information analysis, gaps
in technical intelligence, and cooperation between organizations and services that collect intelligence.
While there is some need to define the role of the government, other needs require a clearer definition
of organizational roles. Salenger (1997) states that the level of security implemented by organizations is
directly proportional to two factors: size and income. Larger companies have the people and the resources
required to establish and run a secure Internet environment, whereas smaller companies may not. Better
protocols for defining and enforcing standards are expected to continue to emerge.

Defining Terms

Attentive systems: Systems that can be used to understand user trends or log and track Internet use across
multiple sources.

Cognitive fit: An approach in specialized system development where the goal is to match, as closely as
possible, the representation to the task and the user. The key concept is that there should be harmony
among three variables: the user’s cognitive skills, the task, and the representation of the task (as
presented to the user).

Horizontal specialization: Specialization across various functional departments or business needs within
the organization, across various domains of an industry, or between industries.

Infrastructure vulnerabilities: Weak points and security gaps in the physical or logical architecture of in-
formation systems that may enhance opportunities to carry out attacks or steal critical information.

Interdiction: The ability to make use of prevention methods that are already available.
Pamela: Process abstraction method for embedded large applications.
Pervasive computing: The convergence of three traditional computing specializations (personal, net-

worked, and embedded) to produce a new computing era marked by wireless and portable hardware
and software.

Process design engineering: An automated engineering approach to the evolutionary design, implemen-
tation, and testing of real-time software.

SCR: Software cost reduction.
Steganography: Hiding data within data.
System specialization: Concentration on unique problems and the techniques for comprehending and

solving them.
Vertical specialization: Specialization in the different levels of problem complexity across the interorga-

nizational pyramid, from operations to top management.
Weak strategy: A generic approach to problem solving that is not tailored to specific problem domains.
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Further Information

A good survey of industry frameworks is presented in the article Contemporary Application-Domain
Taxonomies by Glass and Vessey, published in IEEE Software in 1995. The authors pay particular attention
to representative taxonomies, the IBM industry’s taxonomy, digital industry’s taxonomy, digital application
taxonomy, and Reifer’s application taxonomy.

Here are some other good sources:

SIMS: A Secure Information Management System for Large-Scale Dynamic Coalitions by Jiang and
Dasgupta published in the IEEE Proceedings of DARPA Information Survivability Conference and
Exposition (DISCEX II), June 2001. The article discusses security of large-scale systems.
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Attack Detection in Large Networks by Peterson and Bauman, published by the IEEE Proceedings of
DARPA Information Survivability Conference and Exposition (DISCEX II), June 2001. This article
addresses the impact of large systems’ characteristics on security.

Security of Distributed Object-Oriented Systems by MacDonnell et al., published by the IEEE Pro-
ceedings of DARPA Information Survivability Conference and Exposition (DISCEX II), June 2001.
This article addresses object-oriented security mechanisms that can provide scalable, fine-grained
access control both in applications and at the boundary controller, using CORBA and Java.
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Appendix A:
Professional Societies

in Computing

A.1 The Association for Computing Machinery
(ACM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1

A.2 The Computing Research Association (CRA) . . . . . . . . . A-1
A.3 The Institute of Electrical and Electronics

Engineers (IEEE) Computer Society . . . . . . . . . . . . . . . . . A-2
A.4 The British Computer Society (BCS) . . . . . . . . . . . . . . . . . A-2
A.5 Computer Professionals for Social

Responsibility (CPSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-2
A.6 The American Association for Artificial

Intelligence (AAAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-2
A.7 Special Interest Group on Computer

Graphics (SIGGRAPH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-2
A.8 The Society for Industrial and Applied

Mathematics (SIAM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-3

A.1 The Association for Computing Machinery (ACM)

“Founded in 1947, ACM is a major force in advancing the skills of information technology professionals
and students worldwide. Today, our 75,000 members and the public turn to ACM for the industry’s
leading portal to computing literature, authoritative publications and pioneering conferences, providing
leadership for the 21st century.” More complete information on ACM can be obtained by visiting its Web
page, from which the preceding quotation was taken: http://www.acm.org.

A.2 The Computing Research Association (CRA)

“The Computing Research Association (CRA) is an association of more than 200 North American aca-
demic departments of computer science, computer engineering, and related fields; laboratories and
centers in industry, government, and academia engaging in basic computing research; and affiliated
professional societies. CRA’s mission is to strengthen research and education in the computing fields,
expand opportunities for women and minorities, and improve public and policymaker understand-
ing of the importance of computing and computing research in our society.” More information about
the CRA can be obtained by visiting its Web page, from which the preceding quotation was taken:
http://www.cra.org.
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A.3 The Institute of Electrical and Electronics Engineers
(IEEE) Computer Society

“With nearly 100,000 members, the IEEE Computer Society is the world’s leading organization of com-
puter professionals. Founded in 1946, it is the largest of the 37 societies of the Institute of Electrical
and Electronics Engineers (IEEE). The Computer Society’s vision is to be the leading provider of techni-
cal information and services to the world’s computing professionals.” More information about the IEEE
Computer Society can be obtained by visiting its Web page, from which the preceding quotation was taken:
http://www.computer.org.

A.4 The British Computer Society (BCS)

“The British Computer Society (BCS) is the only Chartered Engineering Institution for Information
Technology (IT). With members in over 100 countries around the world, the BCS is the leading pro-
fessional and learned Society in the field of computers and information systems.” More information
about the BCS can be found by visiting its Web page, from which the preceding quotation was taken:
http://www1.bcs.org.uk.

A.5 Computer Professionals for Social
Responsibility (CPSR)

“CPSR is a public-interest alliance of computer scientists and others concerned about the impact of com-
puter technology on society . . . . As technical experts, CPSR members provide the public and policymakers
with realistic assessments of the power, promise, and limitations of computer technology. As concerned
citizens, we direct public attention to critical choices concerning the applications of computing and how
those choices affect society.” More information about CPSR can be found by visiting its Web page, from
which the preceding quotation was taken: http://www.cpsr.org.

A.6 The American Association for Artificial
Intelligence (AAAI)

“Founded in 1979, the American Association for Artificial Intelligence (AAAI) is a nonprofit scientific
society devoted to advancing the scientific understanding of the mechanisms underlying thought and
intelligent behavior and their embodiment in machines. AAAI also aims to increase public understanding
of artificial intelligence, improve the teaching and training of AI practitioners, and provide guidance for
research planners and funders concerning the importance and potential of current AI developments and
future directions.” More information about AAAI can be found by visiting its Web page, from which the
preceding quotation was taken: http://www.aaai.org.

A.7 Special Interest Group on Computer
Graphics (SIGGRAPH)

“ACM SIGGRAPH is dedicated to the generation and dissemination of information on computer graph-
ics and interactive techniques. We are a membership organization that values passion, integrity, excel-
lence, volunteerism, and cross-disciplinary interaction in all of our activities.” More information about
SIGGRAPH can be found by visiting its Web page, from which the preceding quotation was taken:
http://www.siggraph.org.

© 2004 by Taylor & Francis Group, LLC

http://www.computer.org
http://www1.bcs.org.uk
http://www.cpsr.org
http://www.aaai.org
http://www.siggraph.org


A.8 The Society for Industrial and Applied
Mathematics (SIAM)

“To ensure the strongest interactions between mathematics and other scientific and technological commu-
nities, it remains the policy of SIAM to: advance the application of mathematics and computational science
to engineering, industry, science, and society; promote research that will lead to effective new mathemat-
ical and computational methods and techniques for science, engineering, industry, and society; provide
media for the exchange of information and ideas among mathematicians, engineers, and scientists.” More
information about SIAM can be found by visiting its Web page, from which the preceding quotation was
taken: http://www.siam.org.
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Appendix B: The ACM
Code of Ethics and

Professional Conduct

B.1 Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-1
B.2 General Moral Imperatives . . . . . . . . . . . . . . . . . . . . . . . . . . B-2
B.3 More Specific Professional Responsibilities . . . . . . . . . . . B-4
B.4 Organizational Leadership Imperatives . . . . . . . . . . . . . . B-5
B.5 Compliance with the Code . . . . . . . . . . . . . . . . . . . . . . . . . . B-7
B.6 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-7

B.1 Preamble

Commitment to ethical professional conduct is expected of every member (voting members, associate
members, and student members) of the Association for Computing Machinery (ACM).

This Code, consisting of 24 imperatives formulated as statements of personal responsibility, identifies
the elements of such a commitment. It contains many, but not all, issues professionals are likely to face.
Section 1 outlines fundamental ethical considerations, whereas section 2 addresses additional, more specific
considerations of professional conduct. Statements in section 3 pertain more specifically to individuals
who have leadership roles, whether in the workplace or in a volunteer capacity such as with organizations
like ACM. Principles involving compliance with this Code are given in section 4.

The Code shall be supplemented by a set of guidelines, which provide explanations to assist members
in dealing with the various issues contained in the Code. It is expected that the guidelines will be changed
more frequently than the Code.

The Code and its supplemented guidelines are primarily intended to serve as a basis for ethical decision
making in the conduct of professional work. Secondarily, they may serve as a basis for judging the merit
of a formal complaint pertaining to violation of professional ethical standards.

It should be noted that although computing is not mentioned in the imperatives of section 1.0, the Code
is concerned with how these fundamental imperatives apply to one’s conduct as a computing professional.
These imperatives are expressed in a general form to emphasize that ethical principles that apply to
computer ethics are derived from more general ethical principles.

It is understood that some words and phrases in a Code of ethics are subject to varying interpretations,
and that any ethical principle may conflict with other ethical principles in specific situations. Questions
related to ethical conflicts can best be answered by thoughtful consideration of fundamental principles,
rather than reliance on detailed regulations.
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B.2 General Moral Imperatives: As an ACM member I will . . .

B.2.1 Contribute to Society and Human Well-Being

This principle concerning the quality of life of all people affirms an obligation to protect fundamental
human rights and to respect the diversity of all cultures. An essential aim of computing professionals is
to minimize negative consequences of computing systems, including threats to health and safety. When
designing or implementing systems, computing professionals must attempt to ensure that the products of
their efforts will be used in socially responsible ways, will meet social needs, and will avoid harmful effects
to health and welfare.

In addition to a safe social environment, human well-being includes a safe natural environment. There-
fore, computing professionals who design and develop systems must be alert to, and make others aware
of, any potential damage to the local or global environment.

B.2.2 Avoid Harm to Others

Harm means injury or negative consequences, such as undesirable loss of information, loss of property,
property damage, or unwanted environmental impacts. This principle prohibits use of computing tech-
nology in ways that result in harm to any of the following: users, the general public, employees, employers.
Harmful actions include intentional destruction or modification of files and programs leading to serious
loss of resources or unnecessary expenditure of human resources such as the time and effort required to
purge systems of computer viruses.

Well-intended actions, including those that accomplish assigned duties, may lead to harm unexpect-
edly. In such an event the responsible person or persons are obligated to undo or mitigate the negative
consequences as much as possible. One way to avoid unintentional harm is to carefully consider potential
impacts on all those affected by decisions made during design and implementation.

To minimize the possibility of indirectly harming others, computing professionals must minimize
malfunctions by following generally accepted standards for system design and testing. Furthermore, it
is often necessary to assess the social consequences of systems to project the likelihood of any serious
harm to others. If system features are misrepresented to users, co-workers, or supervisors, the individual
computing professional is responsible for any resulting injury.

In the work environment the computing professional has the additional obligation to report any signs
of system dangers that might result in serious personal or social damage. If one’s superiors do not act to
curtail or mitigate such dangers, it may be necessary to blow the whistle to help correct the problem or
reduce the risk. However, capricious or misguided reporting of violations can, itself, be harmful. Before
reporting violations, all relevant aspects of the incident must be thoroughly assessed. In particular, the
assessment of risk and responsibility must be credible. It is suggested that advice be sought from other
computing professionals. See principle 2.5 regarding thorough evaluations.

B.2.3 Be Honest and Trustworthy

Honesty is an essential component of trust. Without trust an organization cannot function effectively.
The honest computing professional will not make deliberately false or deceptive claims about a system or
system design, but will instead provide full disclosure of all pertinent system limitations and problems.

A computer professional has a duty to be honest about his or her own qualifications, and about any
circumstances that might lead to conflicts of interest.

Membership in volunteer organizations such as ACM may at times place individuals in situations where
their statements or actions could be interpreted as carrying the weight of a larger group of professionals.
An ACM member will exercise care to not misrepresent ACM or positions and policies of ACM or any
ACM units.
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B.2.4 Be Fair and Take Action Not to Discriminate

The values of equality, tolerance, respect for others, and the principles of equal justice govern this impera-
tive. Discrimination on the basis of race, sex, religion, age, disability, national origin, or other such factors
is an explicit violation of ACM policy and will not be tolerated.

Inequities between different groups of people may result from the use or misuse of information and
technology. In a fair society, all individuals would have equal opportunity to participate in, or benefit from,
the use of computer resources regardless of race, sex, religion, age, disability, national origin, or other such
similar factors. However, these ideals do not justify unauthorized use of computer resources nor do they
provide an adequate basis for violation of any other ethical imperatives of this Code.

B.2.5 Honor Property Rights Including Copyrights and Patents

Violation of copyrights, patents, trade secrets, and the terms of license agreements is prohibited by law in
most circumstances. Even when software is not so protected, such violations are contrary to professional
behavior. Copies of software should be made only with proper authorization. Unauthorized duplication
of materials must not be condoned.

B.2.6 Give Proper Credit for Intellectual Property

Computing professionals are obligated to protect the integrity of intellectual property. Specifically, one
must not take credit for other’s ideas or work, even in cases where the work has not been explicitly protected
by copyright, patent, etc.

B.2.7 Respect the Privacy of Others

Computing and communication technology enables the collection and exchange of personal information
on a scale unprecedented in the history of civilization. Thus there is increased potential for violating the
privacy of individuals and groups. It is the responsibility of professionals to maintain the privacy and
integrity of data describing individuals. This includes taking precautions to ensure the accuracy of data,
as well as protecting it from unauthorized access or accidental disclosure to inappropriate individuals.
Furthermore, procedures must be established to allow individuals to review their records and correct
inaccuracies.

This imperative implies that only the necessary amount of personal information be collected in a
system, that retention and disposal periods for that information be clearly defined and enforced, and that
personal information gathered for a specific purpose not be used for other purposes without consent
of the individual(s). These principles apply to electronic communications, including electronic mail,
and prohibit procedures that capture or monitor electronic user data, including messages, without the
permission of users or bona fide authorization related to system operation and maintenance. User data
observed during the normal duties of system operation and maintenance must be treated with strictest
confidentiality, except in cases where it is evidence for the violation of law, organizational regulations, or
this Code. In these cases, the nature or contents of that information must be disclosed only to proper
authorities.

B.2.8 Honor Confidentiality

The principle of honesty extends to issues of confidentiality of information whenever one has made an
explicit promise to honor confidentiality or, implicitly, when private information not directly related to
the performance of one’s duties becomes available. The ethical concern is to respect all obligations of
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confidentiality to employers, clients, and users unless discharged from such obligations by requirements
of the law or other principles of this Code.

B.3 More Specific Professional Responsibilities: As an ACM
computing professional I will . . .

B.3.1 Strive to Achieve the Highest Quality, Effectiveness, and Dignity
in Both the Process and Products of Professional Work

Excellence is perhaps the most important obligation of a professional. The computing professional must
strive to achieve quality and to be cognizant of the serious negative consequences that may result from
poor quality in a system.

B.3.2 Acquire and Maintain Professional Competence

Excellence depends on individuals who take responsibility for acquiring and maintaining professional
competence. A professional must participate in setting standards for appropriate levels of competence
and strive to achieve those standards. Upgrading technical knowledge and competence can be achieved in
several ways: doing independent study; attending seminars, conferences, or courses; and being involved in
professional organizations.

B.3.3 Know and Respect Existing Laws Pertaining to Professional Work

ACM members must obey existing local, state, province, national, and international laws unless there
is a compelling ethical basis not to do so. Policies and procedures of the organizations in which one
participates must also be obeyed. But compliance must be balanced with the recognition that sometimes
existing laws and rules may be immoral or inappropriate and, therefore, must be challenged. Violation of
a law or regulation may be ethical when that law or rule has inadequate moral basis or when it conflicts
with another law judged to be more important. If one decides to violate a law or rule because it is viewed
as unethical, or for any other reason, one must fully accept responsibility for one’s actions and for the
consequences.

B.3.4 Accept and Provide Appropriate Professional Review

Quality professional work, especially in the computing profession, depends on professional reviewing
and critiquing. Whenever appropriate, individual members should seek and utilize peer review as well as
provide critical review of the work of others.

B.3.5 Give Comprehensive and Thorough Evaluations of Computer
Systems and Their Impacts, Including Analysis of Possible Risks

Computer professionals must strive to be perceptive, thorough, and objective when evaluating, recom-
mending, and presenting system descriptions and alternatives. Computer professionals are in a position
of special trust and therefore have a special responsibility to provide objective, credible evaluations to
employers, clients, users, and the public. When providing evaluations the professional must also identify
any relevant conflicts of interest, as stated in imperative 1.3.

As noted in the discussion of principle 1.2 on avoiding harm, any signs of danger from systems
must be reported to those who have opportunity and/or responsibility to resolve them. See the guide-
lines for imperative 1.2 for more details concerning harm, including the reporting of professional
violations.
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B.3.6 Honor Contracts, Agreements, and Assigned Responsibilities

Honoring one’s commitments is a matter of integrity and honesty. For the computer professional this
includes ensuring that system elements perform as intended. Also, when one contracts for work with
another party, one has an obligation to keep that party properly informed about progress toward completing
that work.

A computing professional has a responsibility to request a change in any assignment that he or she feels
cannot be completed as defined. Only after serious consideration and with full disclosure of risks and
concerns to the employer or client should one accept the assignment. The major underlying principle here
is the obligation to accept personal accountability for professional work. On some occasions other ethical
principles may take greater priority.

A judgment that a specific assignment should not be performed may not be accepted. Having clearly
identified one’s concerns and reasons for that judgment, but failing to procure a change in that assignment,
one may yet be obligated, by contract or by law, to proceed as directed. The computing professional’s ethical
judgment should be the final guide in deciding whether or not to proceed. Regardless of the decision, one
must accept the responsibility for the consequences.

However, performing assignments against one’s own judgment does not relieve the professional of
responsibility for any negative consequences.

B.3.7 Improve Public Understanding of Computing and Its Consequences

Computing professionals have a responsibility to share technical knowledge with the public by encouraging
understanding of computing, including the impacts of computer systems and their limitations. This
imperative implies an obligation to counter any false views related to computing.

B.3.8 Access Computing and Communication Resources Only When
Authorized to Do So

Theft or destruction of tangible and electronic property is prohibited by imperative 1.2: “Avoid harm to
others.” Trespassing and unauthorized use of a computer or communication system is addressed by this
imperative. Trespassing includes accessing communication networks and computer systems, or accounts
and/or files associated with those systems, without explicit authorization to do so. Individuals and orga-
nizations have the right to restrict access to their systems so long as they do not violate the discrimination
principle (see 1.4). No one should enter or use another’s computer system, software, or datafiles without
permission. One must always have appropriate approval before using system resources, including .rm57
communication ports, filespace, other system peripherals, and computer time.

B.4 Organizational Leadership Imperatives: As an ACM
member and an organizational leader, I will . . .

B.4.1 Background Note

This section draws extensively from the draft IFIP Code of Ethics, especially its sections on organiza-
tional ethics and international concerns. The ethical obligations of organizations tend to be neglected in
most codes of professional conduct, perhaps because these codes are written from the perspective of the
individual member. This dilemma is addressed by stating these imperatives from the perspective of the
organizational leader. In this context leader is viewed as any organizational member who has leadership
or educational responsibilities. These imperatives generally may apply to organizations as well as their
leaders. In this context organizations are corporations, government agencies, and other employers, as well
as volunteer professional organizations.
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B.4.2 Articulate Social Responsibilities of Members of an Organizational
Unit and Encourage Full Acceptance of Those Responsibilities

Because organizations of all kinds have impacts on the public, they must accept responsibilities to society.
Organizational procedures and attitudes oriented toward quality and the welfare of society will reduce
harm to members of the public, thereby serving public interest and fulfilling social responsibility. Therefore,
organizational leaders must encourage full participation in meeting social responsibilities as well as quality
performance.

B.4.3 Manage Personnel and Resources to Design and Build Information
Systems That Enhance the Quality of Working Life

Organizational leaders are responsible for ensuring that computer systems enhance, not degrade, the
quality of working life. When implementing a computer system, organizations must consider the personal
and professional development, physical safety, and human dignity of all workers. Appropriate human–
computer ergonomic standards should be considered in system design and in the workplace.

B.4.4 Acknowledge and Support Proper and Authorized Uses
of an Organization’s Computing and Communication Resources

Because computer systems can become tools to harm as well as to benefit an organization, the leadership
has the responsibility to clearly define appropriate and inappropriate uses of organizational computing
resources. Whereas the number and scope of such rules should be minimal, they should be fully enforced
when established.

B.4.5 Ensure That Users and Those Who Will Be Affected by a System
Have Their Needs Clearly Articulated during the Assessment
and Design of Requirements; Later the System Must
Be Validated to Meet Requirements

Current system users, potential users, and other persons whose lives may be affected by a system must have
their needs assessed and incorporated in the statement of requirements. System validation should ensure
compliance with those requirements.

B.4.6 Articulate and Support Policies That Protect the Dignity
of Users and Others Affected by a Computing System

Designing or implementing systems that deliberately or inadvertently demean individuals or groups is
ethically unacceptable. Computer professionals who are in decision-making positions should verify that
systems are designed and implemented to protect personal privacy and enhance personal dignity.

B.4.7 Create Opportunities for Members of the Organization to Learn
the Principles and Limitations of Computer Systems

This complements the imperative on public understanding (2.7). Educational opportunities are essential
to facilitate optimal participation of all organizational members. Opportunities must be available to all
members to help them improve their knowledge and skills in computing, including courses that familiarize
them with the consequences and limitations of particular types of systems. In particular, professionals
must be made aware of the dangers of building systems around oversimplified models, the improbability
of anticipating and designing for every possible operating condition, and other issues related to the
complexity of this profession.
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B.5 Compliance with the Code: As an ACM member I will . . .

B.5.1 Uphold and Promote the Principles of This Code

The future of the computing profession depends on both technical and ethical excellence. Not only is
it important for ACM computing professionals to adhere to the principles expressed in this Code, each
member should encourage and support adherence by other members.

B.5.2 Treat Violations of This Code as Inconsistent with Membership
in the ACM

Adherence of professionals to a Code of ethics is largely a voluntary matter. However, if a member does
not follow this Code by engaging in gross misconduct, membership in ACM may be terminated.

B.6 Acknowledgments

Adopted by ACM Council Oct. 16, 1992; Copyright 1993 by ACM, all rights reserved; reprinted with
permission from ACM; originally published in 1993 Communications of the ACM 36(2) and also available
on the ACM Web site http://www.acm.org.
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Appendix C:
Standards-Making

Bodies and Standards

C.1 The International Organization for
Standardization (ISO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-1

C.2 The American National Standards Institute (ANSI) . . . C-2
C.3 The IEEE Standards Association . . . . . . . . . . . . . . . . . . . . . C-2
C.4 The World Wide Web Consortium (W3C) . . . . . . . . . . . C-2
C.5 The American Standard Code for Information

Interchange (ASCII). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-2
C.6 The UNICODE Standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-3
C.7 Floating-Point Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . C-3

International and national standards play an important role in computer science and engineering. Stan-
dards help unify the definition and implementation of complex systems, especially in the areas of ar-
chitecture, human–computer interaction, operating systems and networks, programming languages, and
software engineering.

Principal roles in standardization for computer science and engineering are played by the International
Standards Organization (ISO), the American National Standards Institute (ANSI), and the Institute of
Electrical and Electronics Engineers (IEEE). These organizations are briefly described in the following
sections, with pointers to their Web pages provided for further information.

C.1 The International Organization for Standardization (ISO)

“ISO is a network of the national standards institutes of 147 countries, on the basis of one member per
country, with a Central Secretariat in Geneva, Switzerland, that coordinates the system.

ISO is a non-governmental organization: its members are not, as is the case in the United Nations
system, delegations of national governments. Nevertheless, ISO occupies a special position between the
public and private sectors. This is because, on the one hand, many of its member institutes are part of
the governmental structure of their countries, or are mandated by their government. On the other hand,
other members have their roots uniquely in the private sector, having been set up by national partnerships
of industry associations.”

Some of the countries represented in ISO and their respective member bodies (in parentheses) are listed
below.
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Country Member Body Country Member Body

Australia (SAI) Ireland (NSAI)
Brazil (ABNT) Israel (SII)
Canada (SCC) Italy (UNI)
China (SAC) Japan (JISC)
Czech Republic (COSMT) Netherlands (NEN)
Denmark (DS) Sweden (SIS)
Egypt (EOS) Switzerland (SNV)
Finland (SFS) USA (ANSI)
France (AFNOR) Ukraine (DSSU)
Germany (DIN) United Kingdom (BSI)
India (BIS)

More information about the ISO can be can be obtained by visiting its Web page: http://www.iso.ch.

C.2 The American National Standards Institute (ANSI)

“The American National Standards Institute (ANSI) is a private, non-profit organization (501(c)3) that
administers and coordinates the U.S. voluntary standardization and conformity assessment system. The
Institute’s mission is to enhance both the global competitiveness of U.S. business and the U.S. quality of
life by promoting and facilitating voluntary consensus standards and conformity assessment systems, and
safeguarding their integrity.” (See http://www.ansi.org for more details.)

ANSI standards in computer science exist in the areas of architecture, graphics, and programming
languages. The International Committee for Information Technology Standards (INCITS) is accredited by
ANSI to create and maintain standards in information technology, including the various areas of computer
science. More information about specific ANSI standards in these and other areas can be obtained by visiting
the INCITS Web site: http://www.incits.org.

C.3 The IEEE Standards Association

The IEEE Standards Association also develops standards for certain areas of computer science and engi-
neering, especially the areas of architecture, networks, and software engineering. For more information,
visit the Web page: http://standards.ieee.org.

C.4 The World Wide Web Consortium (W3C)

The World Wide Web Consortium was created in October 1994 to lead the World Wide Web to its full
potential by developing common protocols that promote its evolution and ensure its interoperability. W3C
has around 400 Member organizations from all over the world and has earned international recognition
for its contributions to the growth of the Web. For more information, see the Web site: http://www.w3.org.

C.5 The American Standard Code for Information
Interchange (ASCII)

The American Standard Code for Information Interchange (ASCII) is a standard representation scheme for
English language text based information storage and network transfer. The ASCII standard was established
in 1968, and the current version of the standard is ANSI X3.110-1983.
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C.6 The UNICODE Standard

Unicode is a standard representation scheme for every character, no matter what the language. The Unicode
Standard has been adopted by the major technology vendors, and is required by modern standards such
as XML, CORBA, and Java. It is supported in many operating systems, all modern browsers, and many
other products. For more information, see the Web site: http://www.unicode.org.

C.7 Floating-Point Arithmetic

Computer implementations of floating-point numbers and arithmetic generally follow the IEEE floating-
point standards ANSI/IEEE 754-1985 (R1991) and ANSI/IEEE 854-1988 (R1994). The 754 standard has
been adopted by nearly every computer manufacturer since about 1980. It uses a 32- and 64-bit binary
word as the basis for representing a floating-point number. The 854 standard restates this representation
in a radix-independent style.

© 2004 by Taylor & Francis Group, LLC

http://www.unicode.org


Appendix D:
Common Languages

and Conventions

D.1 ADA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D-1
D.2 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D-2
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D.9 Java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D-3
D.10 LaTeX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D-4
D.11 LISP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D-4
D.12 ML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D-4
D.13 OpenGL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D-5
D.14 PASCAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D-5
D.15 PERL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D-5
D.16 PostScript and PDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D-5
D.17 PROLOG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D-5
D.18 SCHEME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D-6
D.19 Tcl/Tk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D-6
D.20 X Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D-6

This appendix contains brief descriptions of several computer languages, with pointers to their standard
versions and current Web pages added for further information. Each of these languages is supported by
texts and professional references as well as compilers and interpreters. Readers interested in learning about
current texts or implementations for a programming language are encouraged to consult the Web pages
and Usenet news groups listed below.

D.1 ADA

ADA was designed during the late 1970s in a collaborative effort sponsored by the U.S. Department of
Defense. Its purpose was to provide a common high-level language in which systems programs could
be designed and implemented, with special features that support concurrency, data abstraction, and
software reuse. ADA was first implemented in the early 1980s and was first standardized in 1983 as
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a U.S. military standard. Since then, a variety of ADA implementations have emerged and many new
features have been added. The current international ADA standard definition is found in ANSI/ISO/IEC
8652-1995.

ADA is an imperative programming language whose recently added features also support object-oriented
programming. Its syntax is in the PASCAL tradition, and its semantics supports strong typing, data
abstraction and encapsulation, and concurrency control for real-time systems. ADA applications now
cover a wide range, including military, commercial, and other large software systems. ADA compilers are
available for a wide variety of computing platforms. Compilers for the 1995 standard version of ADA are
also available. For more information about ADA and its implementations, consult the Usenet news group
comp.lang.ada or the following Web page: http://www1.acm.org/sigs/sigada.

D.2 C

The language C was designed in 1969 as a systems programming language to support programmers who
were implementing the Unix operating system. Its usage grew rapidly alongside that of Unix itself and
today is probably the most widely used systems programming language. C was standardized in 1990, and
its current standard version is ANSI/ISO 9899-1990.

C is also used widely in the sciences and other programming application areas. It is a high-level imperative
language with extensive function libraries and unusually efficient implementations. C compilers run on
most modern computers and operating systems. For more information about C, consult the Usenet news
group comp.lang.c or the following Web page: http://www.gnu.org/software/gcc/gcc.html.

D.3 C++

C++ was designed by Bjarne Stroustrup in the early 1980s. It is an extension of C that adds new features
for data abstraction, object-oriented programming, and a number of other improvements over traditional
C constructs.

C++ is a hybrid language, including facilities for both imperative and object-oriented programming. It is
a very widely used language, especially in areas of software design that require object-oriented techniques.
C++ implementations exist for nearly all modern platforms, including Unix and non-Unix operating
systems. A standard definition of C++ was adopted by ANSI and ISO in 1998. For more information about
C++, consult the Usenet news group comp.lang.c or the following Web page: http://www.gnu.org/software/
gcc/gcc.html.

D.4 COBOL

Common business-oriented language (COBOL) was first designed in 1960 as a high-level programming
language for data processing applications. Its use grew rapidly in the 1960s, and it has been the most
widely used language in business applications throughout the past three decades. The first ANSI stan-
dard version of COBOL was developed and published in 1968, and subsequent extensions to the stan-
dard were published in 1974 and 1985. The current standard version of COBOL is ANSI X3.23-1985
(R1991).

COBOL programs are written in an abbreviated and stylized form of English. The text of a program has
four main parts or divisions. The identification division serves to identify the program, its author, and other
documentary information. The environment division characterizes the features of the computer on which
the program is run. The data division describes the variables, data structures, and files that the program
uses, and the procedure division contains the executable code for the program. COBOL is an imperative
language, so that programs are the result of procedural decomposition as a design methodology. For more
information about COBOL, consult the Usenet news group comp.lang.cobol or the following Web page:
http://www.cobolportal.com.
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D.5 EIFFEL

EIFFEL is an object-oriented programming language that enforces principles of software design, especially
reliability and reuse. It was invented by Bertrand Meyer in the late 1980s, but at this time no EIFFEL
standard either exists or is in development.

EIFFEL programs are written using the philosophy of “design by contract.” This means that each
object’s state during execution conforms to a predetermined set of constraints that are defined by method
preconditions and postconditions and a class invariant. Before a method can be applied to an object, the
object must be in a state that satisfies the class invariant and the method’s preconditions. Similarly, after a
method has been applied to an object, assurance is guaranteed that the state satisfies the class invariant and
the method’s postconditions. EIFFEL’s type system ensures that type errors are caught at compile time, and
EIFFEL provides automatic garbage collection so that programs need not use a destructor to take an object
out of use. EIFFEL is implemented on a wide variety of platforms. For more information about EIFFEL,
consult the Usenet news group comp.lang.eiffel or the following Web page: http://www.eiffel.com.

D.6 Extensible Markup Language (XML)

XML is a flexible text formatting language derived from SGML (ISO 8879). Originally designed for large-
scale electronic publishing applications, XML is now playing an important role in the definition and
exchange of a wide variety of data on the Web. More information about XML can be found at the Web
site: http://www.w3c.org/XML.

D.7 FORTRAN

Designed by John Backus in 1954, formula translating system (FORTRAN) has become the most widely
used scientific and engineering programming language of the past three decades. Its early versions were
standardized in 1966 and a more extended version was standardized in 1977. The current FORTRAN
standards are defined in ISO/IEC 1539:1991 and ISO/IEC 1539-2:1994 (Part 2: varying length character
strings). A new draft Fortram standard is due to be published in 2004.

FORTRAN is an imperative language, with extensive facilities and libraries to support scientific and en-
gineering applications. Vast amounts of FORTRAN software exist in government and industrial computing
laboratories. FORTRAN is implemented efficiently and widely, with compilers available on all contempo-
rary platforms and operating systems. For more information about FORTRAN, consult the Usenet news
group comp.lang.fortran or the following Web page: http://www.fortran.com.

D.8 Hypertext Markup Language (HTML)

HTML is the standard language for preparing documents to be published on the World Wide Web. It is
nonproprietary, and it can be created and processed by a wide range of word and document processing
tools. HTML uses tags such as <h1> and </h1> to structure text into headings, paragraphs, lists, hypertext
links, graphics, sound, and video. HTML was standardized by ISO in the year 2000 as ISO-15445. More
information can be found at the Web site: http://www.w3c.org/MarkUp.

D.9 Java

Java was designed in the early 1990s by a team at Sun Microsystems headed by James Gosling. Designed
to facilitate interactive programming on the Internet and World Wide Web, Java was rapidly disseminated
among systems programmers at major companies in the technology industry. Java programs, or applets,
can be embedded in appliances and HTML documents, providing interactive executable programs for
users on the Web.

© 2004 by Taylor & Francis Group, LLC

www.eiffel.com
www.w3c.org
www.fortran.com
www.w3c.org


According to the description in Sun’s white paper, “Java is a simple, object-oriented, distributed, in-
terpreted, robust, secure, architecture neutral, portable, high-performance, multithreaded, and dynamic
language.” Java is based on C++ but excludes much of the baggage that makes C++ so cumbersome to use.
Absent from Java are pointers; all objects are dynamic, and automatic garbage collection eliminates the
need for destructors. Because Java is designed for use in networked environments, its designers included
facilities for security. For more information about Java, consult the Usenet news group comp.lang.Java or
the following Web page: http://java.sun.com.

D.10 LaTeX

LaTeX is a markup language and system for document typesetting. It is implemented as a macro package
that extends the TeX system, allowing a wide range of scientific documents to be easily prepared for
typesetting. Tex was designed in 1970 by Donald Knuth. Many of the chapters in this Handbook were
prepared using LaTeX.

The LaTeX language can be used to describe the typesetting characteristics (e.g., boldface words, num-
bered lists) of a document. It is particularly good for describing mathematical formulas, maintaining
bibliographies, and managing number streams (such as section numbers, figure numbers, etc.). LaTeX
supports the automatic insertion of PostScript figures, and has many other features. For more information
about LaTeX, consult the following Web page: http://www.latex-project.org.

D.11 LISP

List processor (LISP) was designed by John McCarthy in the late 1950s. LISP has been used predominantly
in the artificial intelligence area and developed rapidly throughout the 1960s and 1970s. Two dominant
dialects of LISP evolved during that period: MACLISP and INTERLISP. An effort to unify these dialects and
develop a single standard resulted in Common LISP, first implemented in the 1980s. Common LISP was
finally standardized in 1994 as the standard ANSI X3.226-1994. More recently, object-oriented extensions
to LISP have been developed under the rubric Common LISP Object System (CLOS). Thus, one can view
CLOS as a hybrid functional/object-oriented programming language. Both Common LISP and CLOS are
implemented on a wide range of platforms.

LISP is a functional programming language based on the application of functions written in the form of
lambda expressions using prefix notation. It is particularly useful in areas of artificial intelligence program-
ming that require the representation of symbolic expressions for mechanical reasoning and knowledge
representation. Many illustrations of the functional programming paradigm appear in Chapter 92, and
examples of LISP programs appear among the chapters of the Intelligent Systems section of this Handbook.

For more information about LISP and CLOS, consult the Usenet news groups comp.lang.lisp and
comp.lang.clos as well as the following Web page: http://www.lisp.org.

D.12 ML

Meta language (ML) was developed by Robin Milner and others as a functional programming language
with imperative features and an unusually advanced concept of type. Its current version was defined
in 1983, modestly updated in 1997, and is called Standard ML. It is a compiled language whose major
applications are in the computer science education and research communities.

ML has a simple syntax and yet supports data abstraction through its strong static typing system
and type inference mechanism, polymorphism, exceptions, and rule-based specifications. ML is widely
implemented on the major computing platforms, including Unix, Mac, and PC machines. Standard ML
of New Jersey is a free implementation of ML, developed jointly by Princeton University and AT&T. For
more information about ML, consult the Usenet news group comp.lang.ml or the following Web page:
http://www.smlnj.org.
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D.13 OpenGL

OpenGL is the most widely supported environment for developing portable, interactive graphics appli-
cations. Since its introduction in 1992, OpenGL has become the most widely used graphics application
programming interface (API), incorporating a broad set of rendering, texture mapping, special effects,
and other visualization functions. Developers can use OpenGL on all popular desktop and workstation
platforms. For more information, consult the following Web page: http://www.opengl.org.

D.14 PASCAL

PASCAL was designed by Niklaus Wirth in the early 1970s as a language for teaching principles of
computer science and imperative programming. It was the main language for expressing algorithms in
computer science curricula throughout the 1970s and 1980s. However, wide PASCAL usage has given
way to the rapid rise of the object-oriented programming paradigm and related languages such as
C++ and Java. PASCAL’s current standard version is defined in the document ANSI/ISO/IEC 7185–
1990.

As a language designed for teaching, PASCAL is characterized by a strong type system support for
modularity, simple syntax, and robust compile and runtime programming environments. Its features
have evolved over the past two decades, and nonstandard extensions are available that support a wide
range of library functions as well as object-oriented programming. PASCAL was also used as a basis for
the design of the language ADA. For more information about PASCAL, consult the Usenet news group
comp.lang.pascal.misc or the following Web page: http://www.pascal-central.com.

D.15 PERL

PERL is a special-purpose language designed for text processing applications, especially those that require
text search, extraction, and text-based reporting. Its syntax is similar to that of C, and it is usually imple-
mented in Unix environments. However, PERL is an interpreted language, designed for rapid prototyping,
so that its programs will not run as fast as comparable C programs.

Optimized for text processing, PERL employs sophisticated pattern matching techniques to speed up
text search. It also does not arbitrarily limit the size of a file or the depth of a recursive call, as long as memory
is available. For more information about PERL, consult the Usenet news group comp.lang.perl.misc or the
following Web page: http://www.perl.com/.

D.16 PostScript and PDF

PostScript is both a graphics standard and a programming language for page layout and typesetting text
and graphics on laser printers. For example, most of the figures in this Handbook were separately created
in PostScript and then embedded in a word processing document at the time it was typeset. Portable
Document Format (PDF) is a universal file format that preserves the fonts, images, graphics, and layout of
any source document, regardless of the application and platform used to create it. For more information
about PostScript and PDF, consult the Web page: http://www.adobe.com.

D.17 PROLOG

Programming in logic (PROLOG) was developed in the early 1970s by Philippe Roussel. It is primarily
an interpreted logic programming language, designed for use in such artificial intelligence applications as
problem solving, expert systems, knowledge representation, and natural language processing. PROLOG
is implemented on a wide variety of computers, and its general core is defined by the standard ISO/IEC
13211-1:1995.
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The syntax of PROLOG is based on logic expressions, and its semantics is defined using the con-
cepts of resolution and unification. Chapter 93 in this Handbook provides a tutorial introduction to the
logic programming paradigm, with many PROLOG examples provided as illustrations. For more infor-
mation about PROLOG, consult the Usenet news group comp.lang.prolog or the following Web page:
http://www.afm.sbu.ac.uk/logic-prog/.

D.18 SCHEME

SCHEME is a dialect of LISP that developed in the 1970s, designed for educational use, widely imple-
mented, and having a simple syntax and semantics. SCHEME was standardized by ANSI and IEEE in 1991
(ANSI/IEEE 1178-1991).

SCHEME is distinguished from LISP by its small size, static scoping, and more flexible treatment of
functions (i.e., a SCHEME function can be a list element, the value of a variable, the value of an expres-
sion, or passed as a parameter). For more information about SCHEME, consult the following Web page:
http://www.swiss.ai.mit.edu/projects/scheme.

D.19 Tcl/Tk

The Tcl/TK programming system was developed by John Ousterhout. It has two parts: the programming
language Tcl and the toolkit of widgets called Tk, which supports the programming of interactive graphical
user interfaces (GUIs). A main goal of Tcl/Tk is to support the rapid development and prototyping of
such interfaces, so that Tcl programs are usually run in interpretive mode. Tcl/Tk can also be used in
coordination with other languages, and it is implemented on a variety of platforms.

Tcl is an imperative language, with modest support for handling types and data abstractions. It may
not be an ideal language for writing large, complex programs; its narrow focus is to facilitate the rapid
development of user interfaces. Tk widgets include labels, messages, listboxes, texts, frames, scrollbars,
buttons, and other elements that commonly appear in user interfaces. A wide range of applications for
languages such as Tcl/Tk are discussed in the Human–Computer Interaction section of this Handbook.
For more information about Tcl/Tk, consult the following Web page: http://www.tcl.tk.

D.20 X Windows

X Windows is a standard technology for windowing systems that was developed at MIT and is now
maintained by the consortium X.Org. X Windows consists of a library of graphics function calls, called
Xlib, written in C, that is freely available. Application programs that require graphics can call functions
from this library. The functions in Xlib are simpler than those in GKS or PHIGS. They are also more
stylized to the needs of interactive user interface programming, such as creating a window or sampling the
mouse pointer. On the other hand, X Windows functions are not as extensive as PHIGS functions in the
area of graphics applications. For more information about X Windows, consult the following Web page:
http://www.x.org.
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