

Design Patterns

Elements of Reusable Object-Oriented Software

Produced by KevinZhang

Design Patterns: Elements of Reusable Object-Oriented Software

2

Contents

Preface to CD .. 5

Preface to Book .. 7

Foreword ... 9

Guide to Readers .. 10

1 Introduction .. 11

1.1 What Is a Design Pattern? 12

1.2 Design Patterns in Smalltalk MVC 14

1.3 Describing Design Patterns 16

1.4 The Catalog of Design Patterns 18

1.5 Organizing the Catalog ... 21

1.6 How Design Patterns Solve Design Problems 23

1.7 How to Select a Design Pattern 42

1.8 How to Use a Design Pattern 44

2 A Case Study: Designing a Document Editor 46

2.1 Design Problems .. 46

2.2 Document Structure ... 47

2.3 Formatting ... 53

2.4 Embellishing the User Interface 56

2.5 Supporting Multiple Look-and-Feel Standards 60

2.6 Supporting Multiple Window Systems 64

2.7 User Operations .. 72

2.8 Spelling Checking and Hyphenation 77

2.9 Summary .. 90

Design Pattern Catalog .. 93

3 Creational Patterns ... 94

Abstract Factory ... 99

Builder ... 110

Factory Method .. 121

Prototype ... 133

Singleton ... 144

Discussion of Creational Patterns 153

Design Patterns: Elements of Reusable Object-Oriented Software

3

4 Structural Patterns .. 155

Adapter ... 157

Bridge .. 171

Composite ... 183

Decorator ... 196

Fa ade .. 208

Flyweight ... 218

Proxy ... 233

Discussion of Structural Patterns 246

5 Behavioral Patterns .. 249

Chain of Responsibility ... 251

Command ... 263

Interpreter ... 274

Iterator .. 289

Mediator .. 305

Memento ... 316

Observer .. 326

State ... 338

Strategy .. 349

Template Method ... 360

Visitor ... 366

Discussion of Behavioral Patterns 382

6 Conclusion ... 388

6.1 What to Expect from Design Patterns 388

6.2 A Brief History ... 392

6.3 The Pattern Community ... 393

6.4 An Invitation ... 395

6.5 A Parting Thought ... 396

A Glossary ... 397

B Guide to Notation .. 404

B.1 Class Diagram ... 404

B.2 Object Diagram .. 406

B.3 Interaction Diagram ... 407

C Foundation Classes ... 409

C.1 List .. 409

C.2 Iterator .. 412

C.3 ListIterator .. 413

Design Patterns: Elements of Reusable Object-Oriented Software

4

C.4 Point ... 413

C.5 Rect .. 414

Bibliography ... 416

Design Patterns: Elements of Reusable Object-Oriented Software

5

Preface to CD

As we were writing Design Patterns, we knew the patterns we weredescribing had

value because they had proven themselves in manydifferent contexts. Our hope was

that other software engineers wouldbenefit from these patterns as much as we had.

Now, three years after its debut, we find ourselves both grateful andthrilled

by how the book has been received. Lots of people use it.Many tell us the patterns

have helped them design and build bettersystems. Many others have been inspired

to write their own patterns,and the pool of patterns is growing. And many have

commented on whatmight be improved about the book and what they would like to

see inthe future.

A recurring comment in all the feedback has been how well-suited thebook is to

hypertext. There are numerous cross-references, andchasing references is

something a computer can do very well. Sincemuch of the software development

process takes place on computers, itwould be natural to have a book like ours

as an on-line resource.Observations like these got us excited about the potential

of thismedium. So when Mike Hendrickson approached us about turning the bookinto

a CD-ROM, we jumped at the chance.

Two years and several megabytes of e-mail later, we're delighted thatyou can

finally obtain this edition, the Design Patterns CD,and put its unique capabilities

to work. Now you can access a patternfrom your computer even when someone has

borrowed your book. You can search the text for key words and phrases. It's also

considerably easier to incorporate parts of it in your own on-line

documentation.And if you travel with a notebook computer, you can keep the

bookhandy without lugging an extra two pounds of paper.

Hypertext is a relatively new publishing venue, one we arelearning to use just

like everyone else. If you have ideas on howto improve this edition, please send

them todesign-patterns-cd@cs.uiuc.edu.If you have questions or suggestions

concerning the patternsthemselves, send them to

thegang-of-4-patterns@cs.uiuc.edumailing list. (To subscribe, send e-mail to

gang-of-4-patterns@cs.uiuc.eduwith the subject "subscribe".) This list has quite

a few readers, and many of them can answer questions as well as we can#andusually

a lot faster! Also, be sure to check out thePatterns Home Page

athttp://hillside.net/patterns/.There you'll find other books and mailing lists

on patterns, notto mention conference information and patterns published on-line.

This CD entailed considerable design and implementation work. We areindebted to

Mike Hendrickson and the team at Addison-Wesley for theiron-going encouragement

and support. Jeff Helgesen, Jason Jones, andDaniel Savarese garner many thanks

mailto:design-patterns-cd@cs.uiuc.edu
mailto:gang-of-4-patterns@cs.uiuc.edu
http://hillside.net/patterns/

Design Patterns: Elements of Reusable Object-Oriented Software

6

for their development effort andfor patience despite what must appear to have

been our insatiableappetite for revision. A special acknowledgment is due IBM

Research,which continues to underwrite much of this activity. We also thankthe

reviewers, including Robert Brunner, Sandeep Dani, Bob Koss, ScottMeyers, Stefan

Schulz, and the Patterns Discussion Group at theUniversity of Illinois

Urbana-Champaign. Their advice led to at leastone major redesign and several minor

ones.

Finally, we thank all who have taken time to comment on DesignPatterns. Your

feedback has been invaluable to us as we striveto better our understanding and

presentation of this material.

Zurich, Switzerland E.G.

Sydney, Australia R.H.

Urbana, Illinois R.J.

Hawthorne, New York J.V.

August 1997

Design Patterns: Elements of Reusable Object-Oriented Software

7

Preface to Book

This book isn't an introduction to object-oriented technology or design. Many

books already do a good job of that. This book assumes you are reasonably proficient

in at least one object-oriented programming language, and you should have some

experience in object-oriented design as well. You definitely shouldn't have to

rush to the nearest dictionary the moment we mention "types" and "polymorphism,"

or "interface" as opposed to "implementation$ inheritance.

On the other hand, this isn't an advanced technical treatise either. It%s a book

of design patterns that describes simple and elegant solutions to specific problems

in object-oriented software design. Design patterns capture solutions that have

developed and evolved overtime. Hence they aren't the designs people tend to

generate initially. They reflect untold redesign and recoding as developers have

struggled for greater reuse and flexibility in their software. Design patterns

capture these solutions in a succinct and easily applied form.

The design patterns require neither unusual language features nor amazing

programming tricks with which to astound your friends and managers. All can be

implemented in standard object-oriented languages, though they might take a little

more work than ad hoc solutions. But the extra effort invariably pays dividends

in increased flexibility and reusability.

Once you understand the design patterns and have had an "Aha!" (and not just a

"Huh?") experience with them, you won't ever think about object-oriented design

in the same way. You'll have insights that can make your own designs more flexible,

modular, reusable, and understandable#which is why you're interested in

object-oriented technology in the first place, right?

A word of warning and encouragement: Don't worry if you don%t understand this

book completely on the first reading. We didn%t understand it all on the first

writing! Remember that this isn't a book to read once and put on a shelf. We hope

you'll find yourself referring to it again and again for design insights and for

inspiration.

This book has had a long gestation. It has seen four countries, three of its authors'

marriages, and the birth of two (unrelated) offspring.Many people have had a part

in its development. Special thanks are due Bruce Anderson, Kent Beck, and Andr&

Weinand for their inspiration and advice. We also thank those who reviewed drafts

of the manuscript: Roger Bielefeld, Grady Booch, Tom Cargill, Marshall Cline,

Ralph Hyre, Brian Kernighan, Thomas Laliberty, Mark Lorenz, Arthur Riel, Doug

Schmidt, Clovis Tondo, Steve Vinoski, andRebecca Wirfs-Brock. We are also grateful

to the team at Addison-Wesley for their help and patience: Kate Habib,Tiffany

Moore,Lisa Raffaele,Pradeepa Siva, and John Wait.Special thanks to Carl Kessler,

Design Patterns: Elements of Reusable Object-Oriented Software

8

Danny Sabbah, and Mark Wegman at IBMResearch for their unflagging support of this

work.

Last but certainly not least, we thank everyone on the Internet andpoints beyond

who commented on versions of the patterns, offeredencouraging words, and told

us that what we were doing was worthwhile.These people include but are not limited

toJon Avotins,Steve Berczuk,Julian Berdych,Matthias Bohlen,John Brant,Allan

Clarke,Paul Chisholm,Jens Coldewey,Dave Collins,Jim Coplien,Don

Dwiggins,Gabriele Elia,Doug Felt,Brian Foote,Denis Fortin,Ward Harold,Hermann

Hueni,Nayeem Islam,Bikramjit Kalra,Paul Keefer,Thomas Kofler,Doug Lea,Dan

LaLiberte,James Long,Ann Louise Luu,Pundi Madhavan,Brian Marick,Robert

Martin,Dave McComb,Carl McConnell,Christine Mingins,Hanspeter M)ssenb)ck,Eric

Newton,Marianne Ozkan,Roxsan Payette,Larry Podmolik,George Radin,Sita

Ramakrishnan,Russ Ramirez,Alexander Ran,Dirk Riehle,Bryan Rosenburg,Aamod

Sane,Duri Schmidt,Robert Seidl,Xin Shu,and Bill Walker.

We don't consider this collection of design patterns complete andstatic; it's

more a recording of our current thoughts on design. Wewelcome comments on it,

whether criticisms of our examples, referencesand known uses we've missed, or

design patterns we should haveincluded. You can write us care of Addison-Wesley,

or send electronicmail to design-patterns@cs.uiuc.edu. You can also

obtainsoftcopy for the code in the Sample Code sections by sending themessage

"send design pattern source" to design-patterns-source@cs.uiuc.edu. And now

there's a Web page at

http://st-www.cs.uiuc.edu/users/patterns/DPBook/DPBook.html for late-breaking

information and updates.

Mountain View, California E.G.

Montreal, Quebec R.H.

Urbana, Illinois R.J.

Hawthorne, New York J.V.

August 1994

mailto:design-patterns@cs.uiuc.edu
mailto:design-patterns-source@cs.uiuc.edu
http://st-www.cs.uiuc.edu/users/patterns/DPBook/DPBook.html

Design Patterns: Elements of Reusable Object-Oriented Software

9

Foreword

Consider the work of a future software archeologist, tracingthe history of

computing. The fossil record will likely show clearstrata: here is a layer formed

of assembly language artifacts,there is a layer populated with the skeletons of

high orderprogramming languages (with certain calcified legacy partsprobably

still showing some signs of life). Each such layer willbe intersected with the

imprint of other factors that have shapedthe software landscape: components,

residue from the greatoperating system and browser wars, methods, processes, tools.

Eachline in this strata marks a definitive event: below that line,computing was

this way; above that line, the art of computing hadchanged.

Design Patterns draws such a line of demarcation;this is a work that represents

a change in the practice ofcomputing. Erich, Richard, Ralph, and John present

a compellingcase for the importance of patterns in crafting complex

systems.Additionally, they give us a language of common patterns that canbe used

in a variety of domains.

The impact of this work cannot be overstated. As I travel aboutthe world working

with projects of varying domains andcomplexities, it is uncommon for me to

encounter developers whohave not at least heard of the patterns movement. In the

moresuccessful projects, it is quite common to see many of thesedesign patterns

actually used.

With this book, the Gang of Four have made a seminalcontribution to software

engineering. There is much to learnedfrom them, and much to be actively applied.

Grady Booch

Chief Scientist, Rational Software Corporation

Design Patterns: Elements of Reusable Object-Oriented Software

10

Guide to Readers

This book has two main parts. The first part (Chapters 1 and 2)describes what

design patterns are and how they help you designobject-oriented software. It

includes a design case study thatdemonstrates how design patterns apply in practice.

The second partof the book (Chapters 3, 4, and 5) is a catalog of the actual

designpatterns.

The catalog makes up the majority of the book. Its chapters dividethe design

patterns into three types: creational, structural, andbehavioral. You can use

the catalog in several ways. You can readthe catalog from start to finish, or

you can just browse from patternto pattern. Another approach is to study one of

the chapters. Thatwill help you see how closely related patterns distinguish

themselves.

You can use the references between the patterns as a logicalroute through the

catalog. This approach will give you insightinto how patterns relate to each other,

how they can be combinedwith other patterns, and which patterns work well together.

Figure 1.1(page 23) depicts these references graphically.

Yet another way to read the catalog is to use a more problem-directedapproach.

Skip to Section 1.6 (page 23) to read about some common problems in designing

reusable object-orientedsoftware; then read the patterns that address these

problems. Somepeople read the catalog through first and then use aproblem-directed

approach to apply the patterns to their projects.

If you aren't an experienced object-oriented designer, then start withthe simplest

and most common patterns:

• Abstract Factory (page 99)

• Adapter (157)

• Composite (183)

• Decorator (196)

• Factory Method (121)

• Observer (326)

• Strategy (349)

• Template Method (360)

It's hard to find an object-oriented system that doesn't use at leasta couple

of these patterns, and large systems use nearly all of them.This subset will help

you understand design patterns in particular andgood object-oriented design in

general.

Design Patterns: Elements of Reusable Object-Oriented Software

11

1. Introduction

Designing object-oriented software is hard, and designing reusable

object-oriented software is even harder. You must find pertinent objects, factor

them into classes at the right granularity, define class interfaces and inheritance

hierarchies, and establish key relationships among them. Your design should be

specific to the problem at hand but also general enough to address future problems

and requirements. You also want to avoid redesign, or at least minimize it.

Experienced object-oriented designers will tell you that a reusable and flexible

design is difficult if not impossible to get "right" the first time. Before a

design is finished, they usually try to reuse it several times, modifying it each

time.

Yet experienced object-oriented designers do make good designs. Meanwhile new

designers are overwhelmed by the options available and tend to fall back on

non-object-oriented techniques they've used before. It takes a long time for

novices to learn what good object-oriented design is all about. Experienced

designers evidently know something inexperienced ones don't. What is it?

One thing expert designers know not to do is solve every problem from first

principles. Rather, they reuse solutions that have worked for them in the past.

When they find a good solution, they use it again and again. Such experience is

part of what makes them experts. Consequently, you'll find recurring patterns

of classes and communicating objects in many object-oriented systems. These

patterns solve specific design problems and make object-oriented designs more

flexible, elegant, and ultimately reusable. They help designers reuse successful

designs by basing new designs on prior experience. A designer who is familiar

with such patterns can apply them immediately to design problems without having

to rediscover them.

An analogy will help illustrate the point. Novelists and playwrights rarely design

their plots from scratch. Instead, they follow patterns like "Tragically Flawed

Hero" (Macbeth, Hamlet, etc.) or "The Romantic Novel" (countless romance novels).

In the same way, object-oriented designers follow patterns like "represent states

with objects" and "decorate objects so you can easily add/remove features." Once

you know the pattern, a lot of design decisions follow automatically.

We all know the value of design experience. How many times have you had design

d j#-vu#that feeling that you've solved a problem before but not knowing exactly

where or how? If you could remember the details of the previous problem and how

you solved it, then you could reuse the experience instead of rediscovering it.

However, we don't do a good job of recording experience in software design for

others to use.

Design Patterns: Elements of Reusable Object-Oriented Software

12

The purpose of this book is to record experience in designing object-oriented

software as design patterns. Each design pattern systematically names, explains,

and evaluates an important and recurring design in object-oriented systems. Our

goal is to capture design experience in a form that people can use effectively.

To this end we have documented some of the most important design patterns and

present them as a catalog.

Design patterns make it easier to reuse successful designs and architectures.

Expressing proven techniques as design patterns makes them more accessible to

developers of new systems. Design patterns help you choose design alternatives

that make a system reusable and avoid alternatives that compromise reusability.

Design patterns can even improve the documentation and maintenance of existing

systems by furnishing an explicit specification of class and object interactions

and their underlying intent. Put simply, design patterns help a designer get a

design "right" faster.

None of the design patterns in this book describes new or unproven designs. We

have included only designs that have been applied more than once in different

systems. Most of these designs have never been documented before. They are either

part of the folklore of the object-oriented community or are elements of some

successful object-oriented systems#neither of which is easy for novice designers

to learn from. So although these designs aren't new, we capture them in a new

and accessible way: as a catalog of design patterns having a consistent format.

Despite the book's size, the design patterns in it capture only a fraction of

what an expert might know. It doesn't have any patterns dealing with concurrency

or distributed programming or real-time programming. It doesn't have any

application domain-specific patterns. It doesn't tell you how to build user

interfaces, how to write device drivers, or how to use an object-oriented database.

Each of these areas has its own patterns, and it would be worthwhile for someone

to catalog those too.

What is a Design Pattern?

Christopher Alexander says, "Each pattern describes a problem which occurs over

and over again in our environment, and then describes the core of the solution

to that problem, in such a way that you can use this solution a million times

over, without ever doing it the same way twice" [AIS+77]. Even though Alexander

was talking about patterns in buildings and towns, what he says is true about

object-oriented design patterns. Our solutions are expressed in terms of objects

and interfaces instead of walls and doors, but at the core of both kinds of patterns

is a solution to a problem in a context.

In general, a pattern has four essential elements:

Design Patterns: Elements of Reusable Object-Oriented Software

13

1. The pattern name is a handle we can use to describe a design problem, its

solutions, and consequences in a word or two. Naming a pattern immediately

increases our design vocabulary. It lets us design at a higher level of

abstraction. Having a vocabulary for patterns lets us talk about them with

our colleagues, in our documentation, and even to ourselves. It makes it

easier to think about designs and to communicate them and their trade-offs

to others. Finding good names has been one of the hardest parts of developing

our catalog.

2. The problem describes when to apply the pattern. It explains the problem

and its context. It might describe specific design problems such as how

to represent algorithms as objects. It might describe class or object

structures that are symptomatic of an inflexible design. Sometimes the

problem will include a list of conditions that must be met before it makes

sense to apply the pattern.

3. The solution describes the elements that make up the design, their

relationships, responsibilities, and collaborations. The solution doesn't

describe a particular concrete design or implementation, because a pattern

is like a template that can be applied in many different situations. Instead,

the pattern provides an abstract description of a design problem and how

a general arrangement of elements (classes and objects in our case) solves

it.

4. The consequences are the results and trade-offs of applying the pattern.

Though consequences are often unvoiced when we describe design decisions,

they are critical for evaluating design alternatives and for understanding

the costs and benefits of applying the pattern. The consequences for

software often concern space and time trade-offs. They may address language

and implementation issues as well. Since reuse is often a factor in

object-oriented design, the consequences of a pattern include its impact

on a system's flexibility, extensibility, or portability. Listing these

consequences explicitly helps you understand and evaluate them.

Point of view affects one's interpretation of what is and isn't a pattern. One

person's pattern can be another person's primitive building block. For this book

we have concentrated on patterns at a certain level of abstraction. Design patterns

are not about designs such as linked lists and hash tables that can be encoded

in classes and reused as is. Nor are they complex, domain-specific designs for

an entire application or subsystem. The design patterns in this book are

descriptions of communicating objects and classes that are customized to solve

a general design problem in a particular context.

A design pattern names, abstracts, and identifies the key aspects of a common

design structure that make it useful for creating a reusable object-oriented design.

The design pattern identifies the participating classes and instances, their roles

and collaborations, and the distribution of responsibilities. Each design pattern

Design Patterns: Elements of Reusable Object-Oriented Software

14

focuses on a particular object-oriented design problem or issue. It describes

when it applies, whether it can be applied in view of other design constraints,

and the consequences and trade-offs of its use. Since we must eventually implement

our designs, a design pattern also provides sample C++ and (sometimes) Smalltalk

code to illustrate an implementation.

Although design patterns describe object-oriented designs, they are based on

practical solutions that have been implemented in mainstream object-oriented

programming languages like Smalltalk and C++ rather than procedural languages

(Pascal, C, Ada) or more dynamic object-oriented languages (CLOS, Dylan, Self).

We chose Smalltalk and C++ for pragmatic reasons: Our day-to-day experience has

been in these languages, and they are increasingly popular.

The choice of programming language is important because it influences one's point

of view. Our patterns assume Smalltalk/C++-level language features, and that

choice determines what can and cannot be implemented easily. If we assumed

procedural languages, we might have included design patterns called "Inheritance,"

"Encapsulation," and "Polymorphism." Similarly, some of our patterns are supported

directly by the less common object-oriented languages. CLOS has multi-methods,

for example, which lessen the need for a pattern such as Visitor (page 366). In

fact, there are enough differences between Smalltalk and C++ to mean that some

patterns can be expressed more easily in one language than the other. (See Iterator

(289) for an example.)

Design Patterns in Smalltalk MVC

The Model/View/Controller (MVC) triad of classes [KP88] is used to build user

interfaces in Smalltalk-80. Looking at the design patterns inside MVC should help

you see what we mean by the term "pattern."

MVC consists of three kinds of objects. The Model is the application object, the

View is its screen presentation, and the Controller defines the way the user

interface reacts to user input. Before MVC, user interface designs tended to lump

these objects together. MVC decouples them to increase flexibility and reuse.

MVC decouples views and models by establishing a subscribe/notify protocol between

them. A view must ensure that its appearance reflects the state of the model.

Whenever the model's data changes, the model notifies views that depend on it.

In response, each view gets an opportunity to update itself. This approach lets

you attach multiple views to a model to provide different presentations. You can

also create new views for a model without rewriting it.

The following diagram shows a model and three views. (We've left out the controllers

for simplicity.) The model contains some data values, and the views defining a

Design Patterns: Elements of Reusable Object-Oriented Software

15

spreadsheet, histogram, and pie chart display these data in various ways. The

model communicates with its views when its values change, and the views communicate

with the model to access these values.

Taken at face value, this example reflects a design that decouples views from

models. But the design is applicable to a more general problem: decoupling objects

so that changes to one can affect any number of others without requiring the changed

object to know details of the others. This more general design is described by

the Observer (page 326) design pattern.

Another feature of MVC is that views can be nested. For example, a control panel

of buttons might be implemented as a complex view containing nested button views.

The user interface for an object inspector can consist of nested views that may

be reused in a debugger. MVC supports nested views with the CompositeView class,

a subclass of View. CompositeView objects act just like View objects; a composite

view can be used wherever a view can be used, but it also contains and manages

nested views.

Again, we could think of this as a design that lets us treat a composite view

just like we treat one of its components. But the design is applicable to a more

general problem, which occurs whenever we want to group objects and treat the

group like an individual object. This more general design is described by the

Design Patterns: Elements of Reusable Object-Oriented Software

16

Composite (183) design pattern. It lets you create a class hierarchy in which

some subclasses define primitive objects (e.g., Button) and other classes define

composite objects (CompositeView) that assemble the primitives into more complex

objects.

MVC also lets you change the way a view responds to user input without changing

its visual presentation. You might want to change the way it responds to the keyboard,

for example, or have it use a pop-up menu instead of command keys. MVC encapsulates

the response mechanism in a Controller object. There is a class hierarchy of

controllers, making it easy to create a new controller as a variation on an existing

one.

A view uses an instance of a Controller subclass to implement a particular response

strategy; to implement a different strategy, simply replace the instance with

a different kind of controller. It's even possible to change a view's controller

at run-time to let the view change the way it responds to user input. For example,

a view can be disabled so that it doesn't accept input simply by giving it a

controller that ignores input events.

The View-Controller relationship is an example of the Strategy (349) design pattern.

A Strategy is an object that represents an algorithm. It's useful when you want

to replace the algorithm either statically or dynamically, when you have a lot

of variants of the algorithm, or when the algorithm has complex data structures

that you want to encapsulate.

MVC uses other design patterns, such as Factory Method (121) to specify the default

controller class for a view and Decorator (196) to add scrolling to a view. But

the main relationships in MVC are given by the Observer, Composite, and Strategy

design patterns.

Describing Design Patterns

How do we describe design patterns? Graphical notations, while important and

useful, aren't sufficient. They simply capture the end product of the design

process as relationships between classes and objects. To reuse the design, we

must also record the decisions, alternatives, and trade-offs that led to it.

Concrete examples are important too, because they help you see the design in action.

We describe design patterns using a consistent format. Each pattern is divided

into sections according to the following template. The template lends a uniform

structure to the information, making design patterns easier to learn, compare,

and use.

Pattern Name and Classification

Design Patterns: Elements of Reusable Object-Oriented Software

17

The pattern's name conveys the essence of the pattern succinctly. A

good name is vital, because it will become part of your design vocabulary.

The pattern's classification reflects the scheme we introduce in Section

1.5.

Intent

A short statement that answers the following questions: What does the

design pattern do? What is its rationale and intent? What particular design

issue or problem does it address?

Also Known As

Other well-known names for the pattern, if any.

Motivation

A scenario that illustrates a design problem and how the class and object

structures in the pattern solve the problem. The scenario will help you

understand the more abstract description of the pattern that follows.

Applicability

What are the situations in which the design pattern can be applied?

What are examples of poor designs that the pattern can address? How can

you recognize these situations?

Structure

A graphical representation of the classes in the pattern using a notation

based on the Object Modeling Technique (OMT) [RBP+91]. We also use

interaction diagrams [JCJO92, Boo94] to illustrate sequences of requests

and collaborations between objects. Appendix B describes these notations

in detail.

Participants

The classes and/or objects participating in the design pattern and their

responsibilities.

Collaborations

How the participants collaborate to carry out their responsibilities.

Consequences

Design Patterns: Elements of Reusable Object-Oriented Software

18

How does the pattern support its objectives? What are the trade-offs

and results of using the pattern? What aspect of system structure does it

let you vary independently?

Implementation

What pitfalls, hints, or techniques should you be aware of when

implementing the pattern? Are there language-specific issues?

Sample Code

Code fragments that illustrate how you might implement the pattern in

C++ or Smalltalk.

Known Uses

Examples of the pattern found in real systems. We include at least two

examples from different domains.

Related Patterns

What design patterns are closely related to this one? What are the

important differences? With which other patterns should this one be used?

The appendices provide background information that will help you understand the

patterns and the discussions surrounding them. Appendix A is a glossary of

terminology we use. We've already mentioned Appendix B, which presents the various

notations. We'll also describe aspects of the notations as we introduce them in

the upcoming discussions. Finally, Appendix C contains source code for the

foundation classes we use in code samples.

The Catalog of Design Patterns

The catalog beginning on page 93 contains 23 design patterns. Their names and

intents are listed next to give you an overview. The number in parentheses after

each pattern name gives the page number for the pattern (a convention we follow

throughout the book).

Abstract Factory (99)

Provide an interface for creating families of related or dependent

objects without specifying their concrete classes.

Adapter (157)

Design Patterns: Elements of Reusable Object-Oriented Software

19

Convert the interface of a class into another interface clients expect.

Adapter lets classes work together that couldn't otherwise because of

incompatible interfaces.

Bridge (171)

Decouple an abstraction from its implementation so that the two can

vary independently.

Builder (110)

Separate the construction of a complex object from its representation

so that the same construction process can create different representations.

Chain of Responsibility (251)

Avoid coupling the sender of a request to its receiver by giving more

than one object a chance to handle the request. Chain the receiving objects

and pass the request along the chain until an object handles it.

Command (263)

Encapsulate a request as an object, thereby letting you parameterize

clients with different requests, queue or log requests, and support undoable

operations.

Composite (183)

Compose objects into tree structures to represent part-whole

hierarchies. Composite lets clients treat individual objects and

compositions of objects uniformly.

Decorator (196)

Attach additional responsibilities to an object dynamically. Decorators

provide a flexible alternative to subclassing for extending functionality.

Facade (208)

Provide a unified interface to a set of interfaces in a subsystem. Facade

defines a higher-level interface that makes the subsystem easier to use.

Factory Method (121)

Define an interface for creating an object, but let subclasses decide

which class to instantiate. Factory Method lets a class defer instantiation

Design Patterns: Elements of Reusable Object-Oriented Software

20

to subclasses.

Flyweight (218)

Use sharing to support large numbers of fine-grained objects

efficiently.

Interpreter (274)

Given a language, define a represention for its grammar along with an

interpreter that uses the representation to interpret sentences in the

language.

Iterator (289)

Provide a way to access the elements of an aggregate object sequentially

without exposing its underlying representation.

Mediator (305)

Define an object that encapsulates how a set of objects interact.

Mediator promotes loose coupling by keeping objects from referring to each

other explicitly, and it lets you vary their interaction independently.

Memento (316)

Without violating encapsulation, capture and externalize an object's

internal state so that the object can be restored to this state later.

Observer (326)

Define a one-to-many dependency between objects so that when one object

changes state, all its dependents are notified and updated automatically.

Prototype (133)

Specify the kinds of objects to create using a prototypical instance,

and create new objects by copying this prototype.

Proxy (233)

Provide a surrogate or placeholder for another object to control access

to it.

Singleton (144)

Design Patterns: Elements of Reusable Object-Oriented Software

21

Ensure a class only has one instance, and provide a global point of

access to it.

State (338)

Allow an object to alter its behavior when its internal state changes.

The object will appear to change its class.

Strategy (349)

Define a family of algorithms, encapsulate each one, and make them

interchangeable. Strategy lets the algorithm vary independently from

clients that use it.

Template Method (360)

Define the skeleton of an algorithm in an operation, deferring some

steps to subclasses. Template Method lets subclasses redefine certain steps

of an algorithm without changing the algorithm's structure.

Visitor (366)

Represent an operation to be performed on the elements of an object

structure. Visitor lets you define a new operation without changing the

classes of the elements on which it operates.

Organizing the Catalog

Design patterns vary in their granularity and level of abstraction. Because there

are many design patterns, we need a way to organize them. This section classifies

design patterns so that we can refer to families of related patterns. The

classification helps you learn the patterns in the catalog faster, and it can

direct efforts to find new patterns as well.

We classify design patterns by two criteria (Table 1.1). The first criterion,

called purpose, reflects what a pattern does. Patterns can have either creational,

structural, or behavioral purpose. Creational patterns concern the process of

object creation. Structural patterns deal with the composition of classes or

objects. Behavioral patterns characterize the ways in which classes or objects

interact and distribute responsibility.

Purpose

Creational Structural Behavioral

Design Patterns: Elements of Reusable Object-Oriented Software

22

Class Factory Method (121) Adapter (157) Interpreter (274)

Template Method (360)

Scope

Object Abstract Factory (99)

Builder (110)

Prototype (133)

Singleton (144)

Adapter (157)

Bridge (171)

Composite (183)

Decorator (196)

Facade (208)

Flyweight (218)

Proxy (233)

Chain of Responsibility

(251)

Command (263)

Iterator (289)

Mediator (305)

Memento (316)

Observer (326)

State (338)

Strategy (349)

Visitor (366)

Table 1.1: Design pattern space

The second criterion, called scope, specifies whether the pattern applies

primarily to classes or to objects. Class patterns deal with relationships between

classes and their subclasses. These relationships are established through

inheritance, so they are static#fixed at compile-time. Object patterns deal with

object relationships, which can be changed at run-time and are more dynamic. Almost

all patterns use inheritance to some extent. So the only patterns labeled "class

patterns" are those that focus on class relationships. Note that most patterns

are in the Object scope.

Creational class patterns defer some part of object creation to subclasses, while

Creational object patterns defer it to another object. The Structural class

patterns use inheritance to compose classes, while the Structural object patterns

describe ways to assemble objects. The Behavioral class patterns use inheritance

to describe algorithms and flow of control, whereas the Behavioral object patterns

describe how a group of objects cooperate to perform a task that no single object

can carry out alone.

There are other ways to organize the patterns. Some patterns are often used together.

For example, Composite is often used with Iterator or Visitor. Some patterns are

alternatives: Prototype is often an alternative to Abstract Factory. Some patterns

result in similar designs even though the patterns have different intents. For

example, the structure diagrams of Composite and Decorator are similar.

Yet another way to organize design patterns is according to how they reference

each other in their "Related Patterns" sections. Figure 1.1 depicts these

relationships graphically.

Design Patterns: Elements of Reusable Object-Oriented Software

23

Clearly there are many ways to organize design patterns. Having multiple ways

of thinking about patterns will deepen your insight into what they do, how they

compare, and when to apply them.

Figure 1.1: Design pattern relationships

How Design Patterns Solve Design Problems

Design patterns solve many of the day-to-day problems object-oriented designers

face, and in many different ways. Here are several of these problems and how design

patterns solve them.

