52 "] th i A

HItE =
ST B E R R 0 E

(BEWAE)

Design Patlerns

Elements of Reusable
Object-Orieqtéd Software

Erich Garuill s

= L Ll s

—rey Eepr=—

Desi gn Patterns

El ements of Reusabl e Object-Oiented Software

Produced by Kevi nZhang

Design Patterns: Elenents of Reusable Object-Oriented Software

Content s

Preface to CD 5
Preface to BOOK 7
FOr eWOr d . o 9
Quide to Readers 10
1 INtroduCti ON ... 11
1.1 What Is a Design Pattern?. i 12
1.2 Design Patterns in Smalltalk MVC......... 14
1.3 Describing Design Patterns. 16
1.4 The Catalog of Design Patterns............ 18
1.5 Oganizing the Catal 0g...... 21
1.6 How Design Patterns Solve Design Problens...................... 23
1.7 How to Select a Design Pattern......... 42
1.8 How to Use a Design Pattern........ 44
2 A Case Study: Designing a Document Editor 46
2.1 Design Probl ems e 46
2.2 DOCUMBNt SETUCTUIe e s 47
2.3 Format ti Ng . ..o 53
2.4 Enbellishing the User Interface........ 56
2.5 Supporting Miultiple Look-and-Feel Standards.................... 60
2.6 Supporting Multiple Wndow Systens.............., 64
2.7 User Operati Ons 72
2.8 Spelling Checking and Hyphenation.............................. 77
2.9 SUMMMBIY . .ot e e e e 90
Design Pattern Catal ogt e 93
3 Creational Patterns 94
Abstract Fact Ory 99
BUI | der . . 110
Factory Method. 121
Pr Ot Ot Y PE . 133
Singl et ON . . 144
Di scussion of Creational Patternso, 153

Design Patterns: Elenents of Reusable Object-Oriented Software

4 Structural Patterns 155
AdaPt BF L . e 157
Bridge . . oo 171
CONMPOST L B . ot 183
DECOr At OF . . 196
Fa ade . . . 208
Flywei ght .. 218
P OXY o 233
Di scussion of Structural Patterns.............. 246

5 Behavioral Patterns 249
Chain of Responsibility........ ... i 251
COMYBNG . . oo 263
LNt el Pr et B . 274
Lt er At OF .. 289
MEdi At OF . .o 305
MEIMBNE O . . . 316
(@ o FS] = R = 326
Stal B . . 338
SEr Al Y .« . oo 349
Tenplate Method. 360
Vi ST L Or L 366
Di scussion of Behavioral Patterns............. 382

6 CONCI USI ON ..ot e e 388
6.1 What to Expect fromDesign Patterns........................... 388
6.2 A Brief H Story...... ... 392
6.3 The Pattern CommuNity e 393
6.4 An Invitation. 395
6.5 A Parting Thought 396

A G 0SSaArY .ot 397

B Guide to Notation 404
B.1 Class Diagram. it 404
B.2 Qbject Diagram. it 406
B.3 Interaction Diagram.t 407

C Foundation Cl aSSeS ...ttt 409
O = 409
C o2 terat or ..o 412
C 3 Listlterator 413

Design Patterns: Elenents of Reusable Object-Oriented Software

C 4 POI Nt . 413
G5 RECt . 414
Bi bl i ography 416

Design Patterns: Elenents of Reusable Object-Oriented Software

Preface to CD

As we were writing Design Patterns, we knew the patterns we weredescribing had
val ue because t hey had proven t hensel ves i n manydi fferent contexts. Qur hope was

t hat ot her software engi neers woul dbenefit fromthese patterns as nmuch as we had.

Now, three years after its debut, we find ourselves both grateful andthrilled
by howthe book has been recei ved. Lots of peopleuseit.Many tell us the patterns
have hel ped themdesi gn and build bettersystens. Many ot hers have been inspired
to wite their own patterns,and the pool of patterns is growi ng. And many have
comrent ed on what mi ght be inproved about the book and what they would like to

see inthe future.

A recurring comment in all the feedback has been how wel | -suited thebook is to
hypertext. There are numerous cross-references, andchasing references is
sonething a conputer can do very well. Sincenuch of the software devel opnent
process takes place on conputers, itwould be natural to have a book |ike ours
as an on-lineresource. Gbservations |ike these got us excited about the potenti al
of thismedium So when M ke Hendri ckson approached us about turning the bookinto

a CD-ROM we junped at the chance.

Two years and several negabytes of e-nmil later, we're delighted thatyou can
finallyobtainthisedition, the DesignPatterns CD, and put its uniquecapabilities
to work. Now you can access a patternfrom your conputer even when sonmeone has
borrowed your book. You can search the text for key words and phrases. It's al so
consi derably easier to incorporate parts of it in your own on-line
docunentation. And if you travel with a notebook conputer, you can keep the

bookhandy wi thout |ugging an extra two pounds of paper.

Hypertext is a relatively new publishing venue, one we arel earning to use just
Ii ke everyone el se. |f you have i deas on howto i nprove this edition, please send

them t odesi gn- patterns-cd@s. ui uc. edu. I f you have questions or suggestions

concerning the patternsthensel ves, send themto

t hegang- of - 4-patterns@s. uiuc. edunmailing list. (To subscribe, send e-nmail to

gang- of - 4- patterns@s. ui uc. eduwi t h t he subj ect "subscribe".) Thislist has quite
a fewreaders, and nany of themcan answer questi ons as well as we can#andusual |y

a lot faster! Also, be sure to check out thePatterns Hone Page

athttp://hillside.net/patterns/.There you'll find other books and mailing lists

on patterns, notto mention conferenceinformationand patterns publishedon-1ine.

This CD entail ed consi derabl e desi gn and i npl ementati on work. W arei ndebted to
M ke Hendri ckson and the teamat Addi son-Wesl ey for theiron-going encouragenent

and support. Jeff Hel gesen, Jason Jones, andDani el Savarese garner many thanks

5

mailto:design-patterns-cd@cs.uiuc.edu
mailto:gang-of-4-patterns@cs.uiuc.edu
http://hillside.net/patterns/

Design Patterns: Elenents of Reusable Object-Oriented Software

for their devel opnent effort andfor patience despite what nust appear to have
been our insatiabl eappetite for revision. A special acknow edgnent is due | BM
Resear ch, whi ch continues to underwite nuch of this activity. W al so t hankt he
revi ewers, including Robert Brunner, Sandeep Dani, Bob Koss, ScottMyers, Stefan
Schul z, and the Patterns Discussion G oup at theUniversity of Illinois

Ur bana- Chanpai gn. Their adviceledto at | east one maj or redesi gn and several ni nor

ones.

Finally, we thank all who have taken tinme to conment on DesignPatterns. Your
f eedback has been invaluable to us as we striveto better our understandi ng and

presentation of this material.

Zurich, Switzerland E. G
Sydney, Australia R H
Urbana, Illinois R J.
Hawt hor ne, New Yor k J. V.

August 1997

Design Patterns: Elenents of Reusable Object-Oriented Software

Pref ace to Book

This book isn't an introduction to object-oriented technol ogy or design. Many
books al ready do a good j ob of that. Thi s book assunes you are reasonabl y profi ci ent
in at | east one object-oriented programm ng | anguage, and you shoul d have sone
experience in object-oriented design as well. You definitely shouldn't have to
rush to the nearest dictionary the noment we nention "types" and "pol ynor phi sm "

or "interface" as opposed to "inplenentation$ inheritance.

On the other hand, this isn't an advanced technical treatise either. It%s a book
of desi gnpatternsthat describes sinpl e and el egant sol uti onsto specific problens
in object-oriented software design. Design patterns capture sol utions that have
devel oped and evol ved overtine. Hence they aren't the designs people tend to

generate initially. They reflect untol d redesi gn and recodi ng as devel opers have
struggl ed for greater reuse and flexibility in their software. Design patterns

capture these solutions in a succinct and easily applied form

The design patterns require neither unusual |anguage features nor anmmzing

progranmm ng tricks with which to astound your friends and nmanagers. Al can be
i mpl enent ed i n standard obj ect-orientedl| anguages, thoughthey m ght takealittle
more work than ad hoc solutions. But the extra effort invariably pays dividends

in increased flexibility and reusability.

Once you understand the design patterns and have had an "Aha!" (and not just a
"Huh?") experience with them you won't ever think about object-oriented design
inthe sane way. You'll have insights that can nake your own desi gns nore fl exi bl e,
nodul ar, reusable, and understandabl e#which is why you're interested in

object-oriented technology in the first place, right?

A word of warning and encouragenment: Don't worry if you don%t understand this
book conpletely on the first reading. We didn%t understand it all on the first
witing! Renenber that this isn't a book to read once and put on a shel f. We hope
you'll find yourself referringto it again and again for design insights and for

i nspiration.

Thi s book has had al ong gestation. It has seenfour countries, threeof its authors'
marri ages, and the birth of two (unrel ated) of fspri ng. Many peopl e have had a part
inits devel opment. Special thanks are due Bruce Anderson, Kent Beck, and Andr&
Wei nand for their inspiration and advi ce. W al so t hank t hose who revi ewed drafts
of the manuscript: Roger Bielefeld, G ady Booch, Tom Cargill, Marshall Cine,
Ral ph Hyre, Brian Kernighan, Thomas Laliberty, Mark Lorenz, Arthur R el, Doug
Schmi dt, C ovi s Tondo, Steve Vi noski, andRebecca Wrfs-Brock. W are al so grat ef ul
to the team at Addi son-Wesley for their help and patience: Kate Habib, Tiffany
Moor e, Li sa Raf f ael e, Pradeepa Si va, and John Wai t. Speci al thanks to Carl Kessler,

v

Design Patterns: Elenents of Reusable Object-Oriented Software

Danny Sabbah, and Mark Wegman at | BMResear ch for their unflaggi ng support of this

wor k.

Last but certainly not | east, we thank everyone on the I nternet andpoi nts beyond
who conmented on versions of the patterns, offeredencouragi ng words, and told
us t hat what we wer e doi ng was wort hwhi | e. These peopl e i ncl ude but are not limted
toJon Avotins, Steve Berczuk, Julian Berdych, Matthi as Bohl en, John Brant, Al | an
d ar ke, Paul Chi shol m Jens Col dewey, Dave Col lins, Ji m Coplien, Don

Dwi ggi ns, Gabriele Elia, Doug Felt,Brian Foote, Denis Fortin, Ward Har ol d, Her mann
Hueni , Nayeem | sl am Bi kranjit Kal ra, Paul Keefer, Thomas Kofl er, Doug Lea, Dan
LaLi berte, Janmes Long, Ann Loui se Luu, Pundi Madhavan, Bri an Mari ck, Robert

Martin, Dave McConb, Carl MConnel |, Christine M ngins, Hanspeter M)ssenb)ck, Eric
Newt on, Mari anne Ozkan, Roxsan Payette, Larry Podnolik, George Radin, Sita

Rarmekri shnan, Russ Ranirez, Al exander Ran, Dirk Ri ehl e, Bryan Rosenburg, Aanod
Sane, Duri Schm dt, Robert Seidl, Xin Shu, and Bill Wal ker.

We don't consider this collection of design patterns conplete andstatic; it's
nore a recording of our current thoughts on design. Wwel come conments on it,
whet her criticisns of our exanples, referencesand known uses we've m ssed, or
desi gn patterns we shoul d havei ncl uded. You can wite us care of Addi son-\Wesl ey,

or send electronicmail to design-patterns@s.uiuc.edu. You can al so

obt ai nsoftcopy for the code in the Sanple Code sections by sending thenessage

"send design pattern source" to design-patterns-source@s. uiuc.edu. And now

there's a Wb page at
http://st-ww.cs. uiuc. edu/ users/ patterns/ DPBook/ DPBook. ht Ml for | ate-breaking

i nformati on and updates.

Mountain View, California E. G
Mont real , Quebec R H.
Urbana, Illinois R J.
Hawt hor ne, New Yor k J. V.

August 1994

mailto:design-patterns@cs.uiuc.edu
mailto:design-patterns-source@cs.uiuc.edu
http://st-www.cs.uiuc.edu/users/patterns/DPBook/DPBook.html

Design Patterns: Elenents of Reusable Object-Oriented Software

For ewor d

Consi der the work of a future software archeol ogi st, tracingthe history of
computing. The fossil recordw |l likely showcl earstrata: hereis alayer forned
of assenbly | anguage artifacts,there is a layer popul ated with the skel etons of
hi gh orderprogramm ng | anguages (with certain calcified | egacy partsprobably
still showi ng sone signs of life). Each such layer willbe intersected with the
imprint of other factors that have shapedthe software | andscape: conponents,
resi due fromt he great operati ng systemand browser wars, nethods, processes, tools.
Eachline in this strata marks a definitive event: belowthat |ine, computing was

this way; above that line, the art of conputing hadchanged.

Design Patterns draws such a |line of denmarcation;this is a work that represents
a change in the practice ofconputing. Erich, Richard, Ralph, and John present
a conpel l'ingcase for the inportance of patterns in crafting conplex

systens. Addi tional |l y, they give us a | anguage of common patterns that canbe used

in a variety of dommins.

The i npact of this work cannot be overstated. As | travel aboutthe world working
with projects of varying donai ns andconplexities, it is uncommon for ne to

encount er devel opers whohave not at | east heard of the patterns novenent. In the
nmor esuccessful projects, it is quite conmon to see many of thesedesign patterns

actual ly used.

Wth this book, the Gang of Four have nade a seninal contribution to software

engi neering. There is much to | earnedfromthem and nuch to be actively applied.

G ady Booch

Chi ef Scientist, Rational Software Corporation

Design Patterns: Elenents of Reusable Object-Oriented Software

Qui de to Readers

This book has two main parts. The first part (Chapters 1 and 2)descri bes what
design patterns are and how they hel p you desi gnobject-oriented software. It
i ncl udes a desi gn case st udy t hat denonst r at es howdesi gn patterns apply i npractice.
The second partof the book (Chapters 3, 4, and 5) is a catal og of the actual

desi gnpatterns.

The catal og nakes up the majority of the book. Its chapters dividethe design
patterns into three types: creational, structural, andbehavioral. You can use
the catalog in several ways. You can readthe catalog fromstart to finish, or
you can just browse frompatternto pattern. Another approach is to study one of
the chapters. Thatwill help you see how closely related patterns distinguish

t henmsel ves.

You can use the references between the patterns as a | ogicalroute through the
catal og. Thi s approachw || gi ve youinsightintohowpatternsrelateto each other,
howt hey can be conbi nedw t h ot her patterns, and whi ch patterns work wel | together.

Figure 1.1(page 23) depicts these references graphically.

Yet another way to read the catalog is to use a nore probl emdirectedapproach.
Skip to Section 1.6 (page 23) to read about some conmon problens in designing
reusabl e object-orientedsoftware; then read the patterns that address these

probl enms. Sonmepeopl ereadthe catal ogthroughfirst andthen use aprobl emdirected

approach to apply the patterns to their projects.

I f youaren't an experi enced obj ect-orienteddesigner, thenstart w ththe sinplest

and npst common patterns:

Abstract Factory (page 99)
Adapt er (157)

Conposi te (183)

Decorator (196)

Factory Method (121)
bserver (326)

Strategy (349)

Tenpl ate Met hod (360)

It's hard to find an object-oriented systemthat doesn't use at |easta couple
of these patterns, and | arge systens use nearly all of them This subset will help
you understand design patterns in particul ar andgood object-oriented design in

gener al .

10

Design Patterns: Elenents of Reusable Object-Oriented Software

1. Introduction

Desi gni ng object-oriented software is hard, and designing reusabl e
object-oriented software i s even harder. You nmust find perti nent objects, factor
themintocl asses at theright granularity, defineclassinterfaces andinheritance
hi erarchi es, and establish key rel ati onshi ps anong them Your desi gn should be
specific tothe probl emat hand but al so general enough t o address future probl ens
and requirements. You also want to avoid redesign, or at least mnimze it.
Experienced obj ect-oriented designers will tell you that a reusabl e and flexible
design is difficult if not inpossible to get "right" the first tine. Before a
designis finished, they usually try toreuseit several tinmes, nodifyingit each

time.

Yet experienced object-oriented designers do nake good desi gns. Meanwhil e new
designers are overwhel med by the options available and tend to fall back on
non- obj ect-ori ented techniques they've used before. It takes a long time for
novices to | earn what good object-oriented design is all about. Experienced

designers evidently know sonet hi ng i nexperienced ones don't. Wuat is it?

One thing expert designers know not to do is solve every problem fromfirst

principles. Rather, they reuse solutions that have worked for themin the past.
When they find a good solution, they use it again and agai n. Such experience is
part of what nmakes them experts. Consequently, you'll find recurring patterns
of classes and communi cati ng objects in many object-oriented systens. These

patterns sol ve specific design problens and make object-oriented designs nore
flexible, elegant, and ultimately reusable. They hel p desi gners reuse successf ul
desi gns by basi ng new designs on prior experience. A designer who is famliar
with such patterns can apply themimedi ately to desi gn problens wi thout having

to rediscover them

An analogy will helpillustratethe point. Novelists and pl aywights rarely design
their plots fromscratch. Instead, they followpatterns |ike "Tragically Fl aned
Hero" (Macbeth, Haml et, etc.) or "The Ronmantic Novel " (countl ess romance novel s).
Inthe sane way, object-oriented designers followpatterns|ike "represent states
wi th obj ects" and "decorate objects so you can easily add/renove features." Once

you know the pattern, a | ot of design decisions follow automatically.

We all know t he val ue of design experience. How many ti mes have you had desi gn
d j#-vu#t hat feeling that you' ve sol ved a probl embefore but not know ng exactly
where or how? If you could remenber the details of the previous probl emand how
you sol ved it, then you could reuse the experience instead of rediscoveringit.
However, we don't do a good job of recordi ng experience in software design for

others to use.

11

Design Patterns: Elenents of Reusable Object-Oriented Software

The purpose of this book is to record experience in designing object-oriented
sof tware as desi gn patterns. Each design pattern systenatical |y nanes, expl ains,
and eval uates an i nportant and recurring design in object-oriented systens. Qur
goal is to capture design experience in a formthat people can use effectively.
To this end we have docunented sone of the nost inportant design patterns and

present them as a catal og.

Desi gn patterns nake it easier to reuse successful designs and architectures.
Expressi ng proven techni ques as design patterns makes them nore accessible to
devel opers of new systens. Design patterns hel p you choose design alternatives
that make a systemreusabl e and avoid alternatives that conpronise reusability.
Desi gn patterns can even inprove t he docunentation and mai nt enance of existing
systens by furni shing an explicit specification of class and obj ect interactions
and their underlying intent. Put sinply, design patterns help a designer get a

design "right" faster.

None of the design patterns in this book describes new or unproven designs. W
have included only designs that have been applied nore than once in different
systens. Most of these designs have never been docunment ed before. They are either
part of the folklore of the object-oriented community or are el enents of sonme
successful object-oriented systens#neither of whichis easy for novi ce designers
to learn from So although these designs aren't new, we capture themin a new

and accessible way: as a catal og of design patterns having a consistent format.

Despite the book's size, the design patterns in it capture only a fraction of
what an expert might know. It doesn't have any patterns dealing with concurrency
or distributed progranmng or real-tinme programm ng. |t doesn't have any
application domain-specific patterns. It doesn't tell you how to build user
interfaces, howtowitedevicedrivers, or howt o use an obj ect-ori ent ed dat abase.
Each of these areas has its own patterns, and it woul d be worthwhile for sonmeone

to catal og those too.

YWhat is a Design Pattern?

Chri st opher Al exander says, "Each pattern describes a probl emwhich occurs over
and over again in our environment, and then describes the core of the solution
to that problem in such a way that you can use this solution a mllion tines
over, wi thout ever doing it the same way tw ce" [Al S+77]. Even though Al exander
was tal ki ng about patterns in buildings and towns, what he says is true about
obj ect-oriented design patterns. Qur solutions are expressed in terns of objects
and interfacesinstead of walls and doors, but at t he core of both ki nds of patterns

is a solution to a problemin a context.

In general, a pattern has four essential elenents:

12

Design Patterns: Elenents of Reusable Object-Oriented Software

1. The pattern nane is a handl e we can use to describe a design problem its
sol utions, and consequences in aword or two. Naming a pattern i medi ately
i ncreases our design vocabulary. It lets us design at a higher |evel of
abstraction. Having a vocabul ary for patterns | ets us tal k about themw th
our col | eagues, in our docunentation, and even to ourselves. It makes it
easi er to thi nk about designs and to conmuni cate themand their trade-offs
to ot hers. Fi ndi ng good nanes has been one of t he hardest parts of devel opi ng
our catal og.

2. The probl emdescribes when to apply the pattern. It explains the problem
and its context. It mght describe specific design problens such as how
to represent algorithnms as objects. It mght describe class or object
structures that are synptomatic of an inflexible design. Sonetines the
problemw Il include alist of conditions that nust be net before it nekes
sense to apply the pattern.

3. The solution describes the elements that nake up the design, their
rel ationshi ps, responsibilities, and col | aborations. The sol uti on doesn't
describe a particul ar concrete design or i npl enentati on, because a pattern
islikeatenpl atethat canbeappliedinmnydifferent situations. |nstead,
the pattern provides an abstract description of a design probl emand how
a general arrangenent of el ements (cl asses and obj ects i n our case) sol ves
it.

4. The consequences are the results and trade-offs of applying the pattern.
Though consequences are oft en unvoi ced when we descri be desi gn deci si ons,
they arecritical for evaluating desi gn alternatives and for under st andi ng
the costs and benefits of applying the pattern. The consequences for
software of ten concern space and ti ne trade-offs. They nay addr ess | anguage
and i npl ementation issues as well. Since reuse is often a factor in
obj ect-oriented design, the consequences of a pattern include its inpact
on a systems flexibility, extensibility, or portability. Listing these

consequences explicitly hel ps you understand and eval uate them

Poi nt of view affects one's interpretation of what is and isn't a pattern. One
person's pattern can be another person's primtive building bl ock. For this book
we have concentrated on patterns at acertainlevel of abstraction. Desi gn patterns
are not about designs such as linked |lists and hash tables that can be encoded
in classes and reused as is. Nor are they conpl ex, domain-specific designs for
an entire application or subsystem The design patterns in this book are

descriptions of communi cati ng objects and cl asses that are custom zed to sol ve

a general design problemin a particular context.

A design pattern nanes, abstracts, and identifies the key aspects of a conmon
designstructurethat makeit useful for creatingareusabl e object-orienteddesign.
The designpatternidentifiesthe participatingclasses andinstances, their roles

and col | aborations, and the di stribution of responsibilities. Each design pattern

13

Design Patterns: Elenents of Reusable Object-Oriented Software

focuses on a particular object-oriented design problemor issue. It describes
when it applies, whether it can be applied in viewof other design constraints,
and t he consequences and trade-of fs of its use. Since we nust eventual |y i npl enent
our designs, a design pattern al so provi des sanpl e C++ and (somreti nes) Smal |l tal k

code to illustrate an inplenentation.

Al t hough design patterns describe object-oriented designs, they are based on
practical solutions that have been inplenented in mai nstream object-oriented
progranm ng | anguages |ike Smalltal k and C++ rather than procedural |anguages
(Pascal, C, Ada) or nore dynam c object-oriented | anguages (CLCS, Dyl an, Self).
We chose Snalltal k and C++ for pragmatic reasons: Qur day-to-day experience has

been in these | anguages, and they are increasingly popular.

The choi ce of programmi ng | anguage i s i nportant because it i nfluences one's point
of view Qur patterns assume Snalltal k/ C++-1evel |anguage features, and that
choi ce determ nes what can and cannot be inplenmented easily. If we assuned
procedural | anguages, we m ght have i ncl uded desi gn patterns call ed "I nheritance,"

"

"Encapsul ation," and " Pol ynorphism" Simlarly, some of our patterns are supported
directly by the | ess commbn object-oriented | anguages. CLOS has nul ti - net hods,
for exanpl e, which |l essen the need for a pattern such as Visitor (page 366). In
fact, there are enough differences between Snalltal k and C++ to nmean that sone
patterns can be expressed nore easily inonelanguage thanthe other. (Seelterator

(289) for an exanple.)

YDesign Patterns in Smalltal k WC

The Model / View Controller (M/C) triad of classes [KP88] is used to build user
interfaces in Smal I tal k-80. Looki ng at the desi gn patterns i nsi de WC shoul d hel p

you see what we nean by the term"pattern."

M/C consi sts of three kinds of objects. The Model is the application object, the
Viewis its screen presentation, and the Controller defines the way the user
interface reacts to user i nput. Before MWC, user interface designs tended to | unp

these objects together. MVC decouples themto increase flexibility and reuse.

MVC decoupl es vi ews and nodel s by est abl i shi ng a subscri be/notify protocol between
them A view nust ensure that its appearance reflects the state of the nodel.
Whenever the npdel's data changes, the nodel notifies views that depend on it.
In response, each view gets an opportunity to update itself. This approach lets
you attach multiple views to a nodel to provide different presentations. You can

al so create new views for a nodel without rewiting it.

The f ol | owi ng di agramshows a nodel and t hree vi ews. (W'veleft out thecontrollers

for sinmplicity.) The nodel contains some data val ues, and the views defining a

14

Design Patterns: Elenents of Reusable Object-Oriented Software

spreadsheet, histogram and pie chart display these data in various ways. The
nodel conmmuni cateswithits views whenits val ues change, andt he vi ews conmuni cat e

with the nodel to access these val ues.

views

. window IHE.I . window Iaﬂ W _window Iaﬂl

al|blc
x| 60| 30|10
y| 50| 30 | 20
2801|1010

model

Taken at face value, this exanple reflects a design that decouples views from
nodel s. But the designis applicableto anoregeneral problem decoupling objects
so t hat changes t o one can af f ect any nunber of ot hers wi t hout requi ringt he changed
object to know details of the others. This nore general design is described by

the Observer (page 326) design pattern.

Anot her feature of MVCis that views can be nested. For exanple, a control panel
of buttons nmi ght be i npl emented as a conpl ex vi ew cont ai ni ng nested button vi ews.
The user interface for an object inspector can consist of nested views that may
be reused i n a debugger. M/C supports nested views with the ConpositeVi ew cl ass,
a subcl ass of View. ConpositeViewobjects act just |ike Viewobjects; a conposite
vi ew can be used wherever a view can be used, but it also contains and nanages

nested vi ews.

Again, we could think of this as a design that lets us treat a conposite view
just like we treat one of its conponents. But the design is applicable to a nore
general problem which occurs whenever we want to group objects and treat the

group like an individual object. This nore general design is described by the

15

Design Patterns: Elenents of Reusable Object-Oriented Software

Conposite (183) design pattern. It lets you create a class hierarchy in which
sone subcl asses define primtive objects (e.g., Button) and ot her cl asses defi ne
conposi te obj ects (ConpositeView) that assenble the primtives into nore conpl ex

obj ect s.

M/C al so |l ets you change the way a view responds to user input w thout changing
itsvisual presentation. Youm ght want tochangethewayit respondstothekeyboard,
for exanpl e, or have it use a pop-up nenu i nstead of command keys. MVC encapsul at es
the response nechanismin a Controller object. There is a class hierarchy of

controllers, makingit easytocreateanewcontroller asavariationonanexisting

one.

Avi ewuses aninstance of a Control | er subclasstoinpl enent aparticul ar response
strategy; to inplement a different strategy, sinply replace the instance with
a different kind of controller. It's even possible to change a view s controller
at run-tinetolet the viewchange the way it responds to user i nput. For exanpl e,
a view can be disabled so that it doesn't accept input sinply by giving it a

controller that ignores input events.

The Vi ew Control |l er rel ationshi pi s anexanpl eof the Strategy (349) desi gnpattern.
A Strategy is an object that represents an algorithm It's useful when you want
to replace the algorithmeither statically or dynanically, when you have a | ot
of variants of the algorithm or when the al gorithmhas conpl ex data structures

that you want to encapsul ate.

M/Cuses ot her desi gn patterns, such as Factory Method (121) to specify the defaul t
controller class for a view and Decorator (196) to add scrolling to a view. But
the main relationships in MWCare given by the Cbserver, Conposite, and Strategy

design patterns.

¥YDescribing Design Patterns

How do we describe design patterns? G aphical notations, while inmportant and
useful, aren't sufficient. They sinply capture the end product of the design
process as rel ationshi ps between cl asses and objects. To reuse the design, we
nust al so record the decisions, alternatives, and trade-offs that led to it.

Concr et e exanpl es are i nportant too, becausethey hel pyou seethedesigninaction.

We descri be design patterns using a consistent format. Each pattern is divided
into sections according to the following tenplate. The tenplate | ends a uniform
structure to the i nformati on, maki ng design patterns easier to | earn, conpare,

and use.

Pattern Nane and d assification

16

Design Patterns: Elenents of Reusable Object-Oriented Software

The pattern's name conveys the essence of the pattern succinctly. A
good nane is vital, because it will becone part of your design vocabul ary.
The pattern's classification reflects the scheme we i ntroduce in Section
1.5.

I nt ent

A short statenent that answers the foll ow ng questions: What does the
design pattern do? What isits rational eandintent? Wat particul ar design

i ssue or problemdoes it address?

Al so Known As

O her well-known nanes for the pattern, if any.

Mot i vation

Ascenariothat illustrates adesignproblemand howt he cl ass and obj ect
structures in the pattern solve the problem The scenario will help you

under stand the nore abstract description of the pattern that foll ows.

Applicability

What are the situations in which the design pattern can be applied?
What are exanpl es of poor designs that the pattern can address? How can

you recogni ze these situations?

Structure

Agraphical representationof theclassesinthepatternusinganotation
based on the Object Mdeling Technique (OMI) [RBP+91]. W also use
interaction diagrans [JCI02, Boo94] to illustrate sequences of requests
and col | aborati ons bet ween obj ects. Appendi x B descri bes these notations

in detail.

Partici pants

The cl asses and/ or obj ects participatinginthe designpatternandtheir

responsi bilities.

Col | aborati ons

How t he participants collaborate to carry out their responsibilities.

Consequences

17

Design Patterns: Elenents of Reusable Object-Oriented Software

How does the pattern support its objectives? Wat are the trade-offs
and results of using the pattern? What aspect of systemstructure does it

| et you vary independently?
I mpl enent ati on

What pitfalls, hints, or techniques should you be aware of when

i mpl enenting the pattern? Are there | anguage-specific issues?
Sanpl e Code

Code fragments that illustrate howyou m ght inplenent the patternin

C++ or Smalltal k.
Known Uses

Exanpl es of the pattern found in real systens. W include at | east two

exanpl es fromdifferent domains.
Rel ated Patterns

What design patterns are closely related to this one? Wat are the

i mportant differences? Wth which other patterns should this one be used?

The appendi ces provi de background i nformation that will hel p you understand t he
patterns and the di scussions surrounding them Appendix A is a glossary of
term nol ogy we use. W' ve al ready nment i oned Appendi x B, whi ch presentsthevarious
notations. We'll al so describe aspects of the notations as we i ntroduce themin
the upcomi ng di scussions. Finally, Appendix C contains source code for the

foundati on classes we use in code sanpl es.

YThe Catal og of Design Patterns

The cat al og begi nning on page 93 contains 23 design patterns. Their nanes and
intents are listed next to give you an overvi ew. The nunber in parentheses after
each pattern name gives the page nunber for the pattern (a convention we foll ow
t hroughout the book).

Abstract Factory (99)

Provide an interface for creating famlies of related or dependent

obj ects without specifying their concrete classes.

Adapt er (157)

18

Design Patterns: Elenents of Reusable Object-Oriented Software

Convert theinterface of aclassintoanother interface clients expect.
Adapter lets classes work together that couldn't otherw se because of

i nconpati ble interfaces.
Bridge (171)

Decoupl e an abstraction fromits inplenentation so that the two can

vary independently.
Bui | der (110)

Separ ate the construction of a conpl ex object fromits representati on

sothat t he same constructi onprocess cancreatedifferent representati ons.
Chain of Responsibility (251)

Avoi d coupling the sender of a request to its receiver by giving nore
t han one obj ect a chance to handl e the request. Chai n the receiving obj ects

and pass the request along the chain until an object handles it.
Conmmand (263)

Encapsul ate a request as an object, thereby letting you paraneterize
clientsw thdifferent requests, queue or | ogrequests, and support undoabl e

operations.
Conposite (183)

Conpose objects into tree structures to represent part-whole
hi erarchies. Conposite lets clients treat individual objects and

compositions of objects uniformy.
Decorator (196)

Attach additional responsibilitiestoanobject dynam cally. Decorators

provide aflexiblealternativetosubclassingfor extendingfunctionality.
Facade (208)

Provideaunifiedinterfacetoaset of interfacesinasubsystem Facade

defines a higher-level interface that makes the subsystemeasier to use.
Factory Method (121)

Define an interface for creating an object, but | et subcl asses decide

whichclasstoinstantiate. Factory Method | ets a cl ass defer i nstanti ati on

19

Design Patterns: Elenents of Reusable Object-Oriented Software

to subcl asses.
FI ywei ght (218)

Use sharing to support large nunbers of fine-grained objects

efficiently.
Interpreter (274)

G ven a | anguage, define a represention for its grammar along with an
interpreter that uses the representation to interpret sentences in the

| anguage.
Iterator (289)

Provi de away to access t he el enents of an aggr egat e obj ect sequential ly

wi t hout exposing its underlying representation.
Medi at or (305)

Define an object that encapsulates how a set of objects interact.
Medi at or pronot es | oose coupl i ng by keepi ng obj ects fromreferringto each

other explicitly, and it lets you vary their interaction independently.
Menmento (316)

W thout violating encapsul ati on, capture and externalize an object's

internal state so that the object can be restored to this state later.
Observer (326)

Defi ne a one-to- many dependency bet ween obj ects so t hat when one obj ect

changes state, all its dependents are notified and updated automatically.
Prot otype (133)

Speci fy the ki nds of objects to create using a prototypical instance,

and create new objects by copying this prototype.
Proxy (233)

Provi de a surrogat e or pl acehol der for anot her obj ect to control access
toit.

Si ngl et on (144)

20

Design Patterns: Elenents of Reusable Object-Oriented Software

Ensure a class only has one instance, and provide a global point of

access to it.

State (338)

Al'l ow an object to alter its behavior whenits internal state changes.

The object will appear to change its cl ass.

Strategy (349)

Define a famly of algorithnms, encapsul ate each one, and nake them
i nterchangeable. Strategy lets the algorithm vary independently from

clients that use it.
Tenpl ate Met hod (360)

Define the skeleton of an algorithmin an operation, deferring sonme
steps t o subcl asses. Tenpl at e Met hod | et s subcl asses redefi ne certai n steps

of an al gorithmw thout changing the algorithms structure.

Visitor (366)

Represent an operation to be perfornmed on the el ements of an object
structure. Visitor lets you define a new operation w thout changing the

cl asses of the elenents on which it operates.

YOrgani zing the Catal og

Design patterns vary intheir granularity and | evel of abstracti on. Because there
are many desi gn patterns, we need a way to organi ze them This section classifies
design patterns so that we can refer to famlies of related patterns. The

classification hel ps you learn the patterns in the catalog faster, and it can

direct efforts to find new patterns as well.

We classify design patterns by two criteria (Table 1.1). The first criterion,
cal | ed pur pose, refl ects what a pattern does. Patterns can have either creational,
structural, or behavioral purpose. Creational patterns concern the process of
object creation. Structural patterns deal with the conposition of classes or

obj ects. Behavioral patterns characterize the ways in which classes or objects

interact and distribute responsibility.

Pur pose

21

Design Patterns: Elenents of Reusable Object-Oriented Software

Scope | Cl ass Factory Method (121) Adapter (157) Interpreter (274)
Tenpl at e Met hod (360)

Cbj ect Abstract Factory (99) Adapter (157) Chai n of Responsibility

Bui | der (110) Bri dge (171) (251)
Pr ot ot ype (133) Conposite (183) Command (263)
Si ngl et on (144) Decorator (196) Iterator (289)
Facade (208) Medi at or (305)
Fl ywei ght (218) Menento (316)
Proxy (233) Qbserver (326)
State (338)

Strategy (349)
Visitor (366)

Table 1.1: Design pattern space

The second criterion, called scope, specifies whether the pattern applies

primarily toclasses or toobjects. Class patterns deal withrel ati onshi ps between
classes and their subcl asses. These rel ationships are established through

i nheritance, sothey are static#fixed at conpile-tine. Object patterns deal with
obj ect rel ati onshi ps, whi ch can be changed at run-tinme and ar e nore dynani c. Al npst
al |l patterns use inheritance to sone extent. So the only patterns | abel ed "cl ass
patterns" are those that focus on class relationships. Note that nost patterns

are in the Object scope.

Creational class patterns defer some part of object creationto subclasses, while
Creational object patterns defer it to another object. The Structural class

patterns use inheritance to conpose cl asses, whilethe Structural object patterns
descri be ways to assenbl e obj ects. The Behavi oral cl ass patterns use i nheritance
to describe al gorithns and fl owof control, whereas t he Behavi oral object patterns
descri be how a group of objects cooperate to performa task that no single object

can carry out al one.

There are ot her ways to organi ze t he patterns. Some patterns are often used t oget her.
For exanpl e, Conposite is often used with lterator or Visitor. Some patterns are
alternatives: PrototypeisoftenanalternativetoAbstract Factory. Sone patterns
result in simlar designs even though the patterns have different intents. For

exanpl e, the structure diagrans of Conposite and Decorator are sinmilar.
Yet another way to organi ze design patterns is according to how they reference

each other in their "Related Patterns" sections. Figure 1.1 depicts these

rel ati onshi ps graphically.

22

Design Patterns: Elenents of Reusable Object-Oriented Software

Clearly there are many ways to organi ze design patterns. Having nultiple ways
of thinking about patterns will deepen your insight into what they do, howthey
conpare, and when to apply them

nt
f""___-l Memento F'r:}qr.
saving stale Adapter
Builder MMQ
awoidin -

Iterator

compodiies

aniimarating
chifdren
adding
responsihities
1o objacts

shang
Decorator COmpasiiog

composed
iy I Command

defining defining
S fraversals
L cperations | ma cham
)] dhefietiniy .
Flywaight AT \x_h"- Visitor

changing skin

VErsuS guits
adding

sharing Interprater aPdnalons Chain of Responsibility |

stralegies
(. shanng J

Figure 1.1: Design pattern relationships

How Desi gn Patterns Sol ve Design Probl ens

Desi gn patterns sol ve many of the day-to-day probl ens object-oriented designers
face, and i n many di fferent ways. Here are several of these probl ens and howdesi gn
patterns solve them

23

