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      Introduction          

 The multicore revolution is at hand. Parallel processing is no longer the exclusive domain of 
supercomputers or clusters. The entry - level server and even the basic developer workstation have the 
capacity for hardware -  and software - level parallel processing. The question is what does this mean for 
the software developer and what impact will it have on the software development process? In the race 
for who has the fastest computer, it is now more attractive for chip manufacturers to place multiple 
processors on a single chip than it is to increase the speed of the processor. Until now the software 
developer could rely on the next new processor to speed up the software without having to make any 
actual improvements to the software. Those days are gone. To increase overall system performance, 
computer manufacturers have decided to add more processors rather than increase clock frequency. This 
means if the software developer wants the application to benefit from the next new processor, the 
application will have to be modified to exploit multiprocessor computers. 

 Although sequential programming and single core application development have a place and will 
remain with us, the landscape of software development now reflects a shift toward multithreading and 
multiprocessing. Parallel programming techniques that were once only the concern of theoretical 
computer scientists and university academics are in the process of being reworked for the masses. The 
ideas of multicore application design and development are now a concern for the mainstream.  

  Learn Multicore Programming 
 Our book  Professional Multicore Programming: Design and Implementation for C++ Developers  presents 
the ABCs of multicore programming in terms the average working software developer can understand. 
We introduce the reader to the everyday fundamentals of programming for multiprocessor and 
multithreaded architectures. We provide a practical yet gentle introduction to the notions of parallel 
processing and software concurrency. This book takes complicated, almost unapproachable, 
parallel programming techniques and presents them in a simple, understandable manner. We address 
the pitfalls and traps of concurrency programming and synchronization. We provide a no - nonsense 
discussion of multiprocessing and multithreading models. This book provides numerous programming 
examples that demonstrate how successful multicore programming is done. We also include methods 
and techniques for debugging and testing multicore programming. Finally, we demonstrate how to take 
advantage of processor specific features using cross - platform techniques.  

  Different Points of View 
 The material in this book is designed to serve a wide audience with different entry points into multicore 
programming and application development. The audience for this book includes but is not limited to: 

  Library and tool producers  

  Operating system programmers  

�

�
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  Kernel developers  

  Database and application server designers and implementers  

  Scientific programmers and users with compute - intensive applications  

  Application developers  

  System programmers    

 Each group sees the multicore computer from a somewhat different perspective. Some are concerned 
with bottom - up methods and need to develop software that takes advantage of hardware - specific and 
vendor - specific features. For these groups, the more detailed the information about the nooks and 
crannies of multithreaded processing the better. Other groups are interested in top - down methods. This 
group does not want to be bothered with the details of concurrent task synchronization or thread safety. 
This group prefers to use high - level libraries and tools to get the job done. Still other groups need a mix 
of bottom - up and top - down approaches. This book provides an introduction to the many points of 
view of multicore programming, covering both bottom - up and top - down approaches.  

  Multiparadigm Approaches are the Solution 
 First, we recognize that not every software solution requires multiprocessing or multithreading. Some 
software solutions are better implemented using sequential programming techniques (even if the target 
platform is multicore). Our approach is solution and model driven. First, develop the model or solution 
for the problem. If the solution requires that some instructions, procedures, or tasks need to execute 
concurrently then determine which the best set of techniques to use are. This approach is in contrast to 
forcing the solution or model to fit some preselected library or development tool. The technique should 
follow the solution. Although this book discusses libraries and development tools, it does not advocate 
any specific vendor library or tool set. Although we include examples that take advantage of particular 
hardware platforms, we rely on cross - platform approaches. POSIX standard operating system calls and 
libraries are used. Only features of C++ that are supported by the International C++ standard are used. 

 We advocate a component approach to the challenges and obstacles found in multiprocessing and 
multithreading. Our primary objective is to take advantage of framework classes as building blocks for 
concurrency. The framework classes are supported by object - oriented mutexes, semaphores, pipes, 
queues, and sockets. The complexity of task synchronization and communication is significantly reduced 
through the use of interface classes. The control mechanism in our multithreaded and multiprocessing 
applications is primarily agent driven. This means that the application architectures that you will see in 
this book support the multiple - paradigm approach to software development. 

 We use object - oriented programming techniques for component implementation and primarily agent -
 oriented programming techniques for the control mechanism. The agent - oriented programming ideas 
are sometimes supported by logic programming techniques. As the number of available cores on the 
processor increase, software development models will need to rely more on agent - oriented and logic 
programming. This book includes an introduction to this multiparadigm approach for software 
development.  

�

�

�

�

�
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  Why C++? 
 There are C++ compilers available for virtually every platform and operating environment. The ANSI 
American National Standards Institute (ANSI) and International Organization for Standardization (ISO) 
have defined standards for the C++ language and its library. There are robust open - source 
implementations as well as commercial implementations of the language. The language has to be widely 
adopted by researchers, designers, and professional developers around the world. The C++ language has 
been used to solve problems of all sizes and shapes from device drivers to large - scale industrial 
applications. The language supports a multiparadigm approach to software development. We can 
implement Object - Oriented designs, logic programming designs, and agent - oriented designs seamlessly 
in C++. We can also use structured programming techniques or low - level programming techniques 
where necessary. This flexibility is exactly what ’ s needed to take advantage of the new multicore world. 
Further, C++ compilers provide the software developer with a direct interface to the new features of the 
multicore processors.  

   UML  Diagrams 
 Many of the diagrams in this book use the Unified Modeling Language (UML) standard. In particular, 
activity diagrams, deployment diagrams, class diagrams and state diagrams are used to describe 
important concurrency architectures and class relationships. Although a knowledge of the UML is not 
necessary, familiarity is helpful.  

  Development Environments Supported 
 The examples in this book were all developed using ISO standard C/C++. This means the examples and 
programs can be compiled in all the major environments. Only POSIX - compliant operating system calls 
or libraries are used in the complete programs. Therefore, these programs will be portable to all 
operating system environments that are POSIX compliant. The examples and programs in this book were 
tested on the SunFire 2000 with UltraSparc T1 multiprocessor, the Intel Core 2 Duo, the IBM Cell 
Broadband Engine, and the AMD Dual Core Opteron.  

  Program Profiles 
 Most complete programs in the book are accompanied by a program profile. The profile will contain 
implementation specifics such as headers required, libraries required, compile instructions, and link 
instructions. The profile also includes a notes section that will contain any special considerations that 
need to be taken when executing the program. All code is meant for exposition purposes only.  
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  Testing and Code Reliability 
 Although all examples and applications in this book were tested to ensure correctness, we make no 
warranties that the programs contained in this book are free of defects or error or are consistent with any 
particular standard or mechantability, or will meet your requirement for any particular application. They 
should not be relied upon for solving problems whose incorrect solution could result in injury to person 
or loss of property. The authors and publishers disclaim all liability for direct or consequential damages 
resulting from your use of the examples, programs, or applications present in this book.  

  Conventions 
 To help you get the most from the text and keep track of what ’ s happening, we ’ ve used a number of 
conventions throughout the book.     

 Notes, tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.   

 As for styles in the text: 

  We  highlight  new terms and important words when we introduce them.  

  We show keyboard strokes like this: Ctrl+A.  

  We show filenames, URLs, and code within the text like this:  persistence.properties .  

  We present code in two different ways: 

We use a monofont type with no highlighting for most code examples.

We use gray highlighting to emphasize code that � s particularly important in the 
present context.  

 This book contains both code listings and code examples.  

  Code listings are complete programs that are runnable. As previously mentioned, in most cases, 
they will be accompanied with a program profile that tells you the environment the program 
was written in and gives you a description and the compiling and linking instructions, and so 
forth.  

  Code examples are snippets. They do not run as is. They are used to focus on showing how 
something is called or used, but the code cannot run as seen.     

  Source Code 
 As you work through the examples in this book, you may choose either to type in all the code manually 
or to use the source code files that accompany the book. All of the source code used in this book is 
available for download at  www.wrox.com . Once at the site, simply locate the book ’ s title (either by using 
the Search box or by using one of the title lists) and click the Download Code link on the book ’ s detail 
page to obtain all the source code for the book.     

�

�

�

�

�

�
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 Because many books have similar titles, you may find it easiest to search by ISBN; this book ’ s ISBN is 
978 - 0 - 470 - 28962 - 4.   

 Once you download the code, just decompress it with your favorite decompression tool. Alternately, you 
can go to the main Wrox code download page at  www.wrox.com/dynamic/books/download.aspx  to 
see the code available for this book and all other Wrox books.  

  Errata 
 We make every effort to ensure that there are no errors in the text or in the code. However, no one is 
perfect, and mistakes do occur. If you find an error in one of our books, such as a spelling mistake or 
faulty piece of code, we would be very grateful for your feedback. By sending in errata, you may save 
another reader hours of frustration, and at the same time you will be helping us provide even higher -
 quality information. 

 To find the errata page for this book, go to  www.wrox.com  and locate the title using the Search box or 
one of the title lists. Then, on the book details page, click the Book Errata link. On this page, you can 
view all errata that has been submitted for this book and posted by Wrox editors. A complete book list 
including links to each book ’ s errata is also available at  www.wrox.com/misc - pages/booklist.shtml . 

 If you don ’ t spot  “ your ”  error on the Book Errata page, go to  www.wrox.com/contact/techsupport
.shtml  and complete the form there to send us the error you have found. We ’ ll check the information 
and, if appropriate, post a message to the book ’ s errata page and fix the problem in subsequent editions 
of the book.  

  p2p.wrox.com 
 For author and peer discussion, join the P2P forums at  p2p.wrox.com . The forums are a Web - based 
system for you to post messages relating to Wrox books and related technologies and interact with other 
readers and technology users. The forums offer a subscription feature to e - mail you topics of interest of 
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts, 
and your fellow readers are present on these forums. 

 At  http://p2p.wrox.com , you will find a number of different forums that will help you not only as you 
read this book but also as you develop your own applications. To join the forums, just follow these steps: 

  1.   Go to  p2p.wrox.com  and click the Register link.  

  2.   Read the terms of use and click Agree.  

  3.   Complete the required information to join as well as any optional information you wish to 
provide and click Submit.  

  4.   You will receive an e - mail with information describing how to verify your account and complete 
the joining process.        
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 You can read messages in the forums without joining P2P, but in order to post your own messages, you 
must join.   

 Once you join, you can post new messages and respond to messages other users post. You can read 
messages at any time on the Web. If you would like to have new messages from a particular forum 
e - mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing. 

 For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to 
questions about how the forum software works as well as many common questions specific to P2P and 
Wrox books. To read the FAQs, click the FAQ link on any P2P page.         
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  If a person walks fast on a road covering fifty miles in a day, this does not mean he is 
capable of running unceasingly from morning till night. Even an unskilled runner 
may run all day, but without going very far.   

  — Miyamoto Musahi,  The Book of Five Rings     

 The most recent advances in microprocessor design for desktop computers involve putting 
multiple processors on a single computer chip. These multicore designs are completely replacing 
the traditional single core designs that have been the foundation of desktop computers. IBM, Sun, 
Intel, and AMD have all changed their chip pipelines from single core processor production to 
multicore processor production. This has prompted computer vendors such as Dell, HP, and Apple 
to change their focus to selling desktop computers with multicores. The race to control market 
share in this new area has each computer chip manufacturer pushing the envelope on the number 
of cores that can be economically placed on a single chip. All of this competition places more 
computing power in the hands of the consumer than ever before. The primary problem is that 
regular desktop software has not been designed to take advantage of the new multicore 
architectures. In fact, to see any real speedup from the new multicore architectures, desktop 
software will have to be redesigned. 

 The approaches to designing and implementing application software that will take advantage 
of the multicore processors are radically different from techniques used in single core 
development. The focus of software design and development will have to change from sequential 
programming techniques to parallel and multithreaded programming techniques. 

 The standard developer ’ s workstation and the entry - level server are now multiprocessors capable 
of hardware - level multithreading, multiprocessing, and parallel processing. Although sequential 
programming and single core application development have a place and will remain with us, the 
ideas of multicore application design and development are now in the mainstream. 
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 This chapter begins your look at multicore programming. We will cover: 

  What is a multicore?  

  What multicore architectures are there and how do they differ from each other?  

  What do you as a designer and developer of software need to know about moving from 
sequential programming and single core application development to multicore programming?     

  What Is a Multicore? 
 A  multicore  is an architecture design that places multiple processors on a single die (computer chip). Each 
processor is called a core. As chip capacity increased, placing multiple processors on a single chip 
became practical. These designs are known as  Chip Multiprocessors (CMPs)  because they allow for single 
chip multiprocessing. Multicore is simply a popular name for CMP or single chip multiprocessors. The 
concept of single chip multiprocessing is not new, and chip manufacturers have been exploring the idea 
of multiple cores on a uniprocessor since the early 1990s. Recently, the CMP has become the preferred 
method of improving overall system performance. This is a departure from the approach of increasing 
the clock frequency or processor speed to achieve gains in overall system performance. Increasing the 
clock frequency has started to hit its limits in terms of cost - effectiveness. Higher frequency requires more 
power, making it harder and more expensive to cool the system. This also affects sizing and packaging 
considerations. So, instead of trying to make the processor faster to gain performance, the response is 
now just to add more processors. The simple realization that this approach is better has prompted the 
multicore revolution. Multicore architectures are now center stage in terms of improving overall system 
performance. 

 For software developers who are familiar with multiprocessing, multicore development will be familiar. 
From a logical point of view, there is no real significant difference between programming for multiple 
processors in separate packages and programming for multiple processors contained in a single package 
on a single chip. There may be performance differences, however, because the new CMPs are using 
advances in bus architectures and in connections between processors. In some circumstances, this may 
cause an application that was originally written for multiple processors to run faster when executed on a 
CMP. Aside from the potential performance gains, the design and implementation are very similar. We 
discuss minor differences throughout the book. For developers who are only familiar with sequential 
programming and single core development, the multicore approach offers many new software 
development paradigms.  

  Multicore Architectures 
 CMPs come in multiple flavors: two processors (dual core), four processors (quad core), and eight 
processors (octa - core) configurations. Some configurations are multithreaded; some are not. There are 
several variations in how cache and memory are approached in the new CMPs. The approaches to 
processor - to - processor communication vary among different implementations. The CMP implementations 
from the major chip manufacturers each handle the I/O bus and the Front Side Bus (FSB) differently. 

�

�

�
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  Configuration 1 in Figure  1 - 1  uses hyperthreading. Like CMP, a hyperthreaded processor allows 
two or more threads to execute on a single chip. However, in a hyperthreaded package the 
multiple processors are logical instead of physical. There is some duplication of hardware but 
not enough to qualify a separate physical processor. So hyperthreading allows the processor to 
present itself to the operating system as complete multiple processors when in fact there is a 
single processor running multiple threads.  

  Configuration 2 in Figure  1 - 1  is the classic multiprocessor. In configuration 2, each processor is 
on a separate chip with its own hardware.  

  Configuration 3 represents the current trend in multiprocessors. It provides complete processors 
on a single chip.    

 As you shall see in Chapter  2 , some multicore designs support hyperthreading within their cores. For 
example, a hyperthreaded dual core processor could present itself logically as a quad core processor to 
the operating system. 

  Hybrid Multicore Architectures 
  Hybrid multicore architectures  mix multiple processor types and/or threading schemes on a single 
package. This can provide a very effective approach to code optimization and specialization by 
combining unique capabilities into a single functional core. One of the most common examples of the 
hybrid multicore architecture is IBM ’ s Cell broadband engine (Cell). We explore the architecture of 
the Cell in the next chapter. 

�

�

�

Again, most of these differences are not visible when looking strictly at the logical view of an application 
that is being designed to take advantage of a multicore architecture. Figure  1 - 1  illustrates three common 
configurations that support multiprocessing.     
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 What ’ s important to remember is that each configuration presents itself to the developer as a set of two 
or more logical processors capable of executing multiple tasks concurrently. The challenge for system 
programmers, kernel programmers, and application developers is to know when and how to take 
advantage of this.   

  The Software Developer ’ s Viewpoint 
 The low cost and wide availability of CMPs bring the full range of parallel processing within the reach 
of the average software developer. Parallel processing is no longer the exclusive domain of supercomputers 
or clusters. The basic developer workstation and entry - level server now have the capacity for hardware -  
and software - level parallel processing. This means that programmers and software developers can 
deploy applications that take advantage of multiprocessing and multithreading as needed without 
compromising design or performance. However, a word of caution is in order. Not every software 
application requires multiprocessing or multithreading. In fact, some software solutions and computer 
algorithms are better implemented using sequential programming techniques. In some cases, 
introducing the overhead of parallel programming techniques into a piece of software can degrade its 
performance. Parallelism and multiprocessing come at a cost. If the amount of work required to solve the 
problem sequentially in software is less than the amount of work required to create additional threads 
and processes or less than the work required to coordinate communication between concurrently 
executing tasks, then the sequential approach is better. 

 Sometimes determining when or where to use parallelism is easy because the nature of the software 
solution demands parallelism. For example, the parallelism in many client - server configurations is 
obvious. You might have one server, say a database, and many clients that can simultaneously make 
requests of the database. In most cases, you don ’ t want one client to be required to wait until another 
client ’ s request is filled. An acceptable solution allows the software to process the clients ’  requests 
concurrently. On the other hand, there is sometimes a temptation to use parallelism when it is not 
required. For instance, you might be tempted to believe that a keyword word search through text in 
parallel will automatically be faster than a sequential search. But this depends on the size of text to be 
searched for and on the time and amount of overhead setup required to start multiple search agents in 
parallel. The design decision in favor of a solution that uses concurrency has to consider break - even 
points and problem size. In most cases, software design and software implementation are separate 
efforts and in many situations are performed by different groups. But in the case where software 
speedup or optimal performance is a primary system requirement, the software design effort has to at 
least be aware of the software implementation choices, and the software implementation choices have to 
be informed by potential target platforms. 

 In this book, the target platforms are multicore. To take full advantage of a multicore platform, you need 
to understand what you can do to access the capabilities of a CMP. You need to understand what 
elements of a CMP you have control over. You will see that you have access to the CMP through the 
compiler, through operating system calls/libraries, through language features, and through application -
 level libraries. But first, to understand what to do with the CMP access, you need a basic understanding 
of the processor architecture. 
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  The Basic Processor Architecture 
 The components you can access and influence include registers, main memory, virtual memory, 
instruction set usage, and object code optimizations. It is important to understand what you can 
influence in single processor architectures before attempting to tackle multiprocessor architectures. 
Figure  1 - 2  shows a simplified logical overview of a processor architecture and memory components.   

 There are many variations on processor architecture, and Figure  1 - 2  is only a logical overview. It 
illustrates the primary processor components you can work with. While this level of detail and these 
components are often transparent to certain types of application development, they play a more central 
role in bottom - up multicore programming and in software development efforts where speedup and 
optimal performance are primary objectives. Your primary interface to the processor is the compiler. The 
operating system is the secondary interface.     

 In this book, we will use C++ compilers to generate the object code. Parallel programming can be used 
for all types of applications using multiple approaches, from low to high level, from object - oriented to 
structured applications. C++ supports multiparadigm approaches to programming, so we use it for its 
flexibility.   

 Table  1 - 1  shows a list of categories where the compiler interfaces with the CPU and instruction set. 
Categories include floating - point, register manipulation, and memory models.    
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Table 1-1

Compiler Switch 
Options Description Examples of Usage

Vectorization This option enables the vectorizer, a 
component of the compiler that 
automatically uses Single 
Instruction Multiple Data (SIMD) 
instructions in the MMX registers 
and all the SSE instruction sets.

-x    -ax
Enables the vectorizer.

Auto parallelization This option identifies loop 
structures that contain parallelism 
and then (if possible) safely 
generates the multithreaded 
equivalent executing in parallel.

-parallel
Triggers auto parallelization.

Parallelization 
with OpenMP

With this option the compiler 
generates multithreaded code based 
on OpenMP directives in the source 
code added by the programmer.

#pragma omp parallel
{
    #pragma omp for
     // your code
}

Fast This option detects incompatible 
processors; error messages are 
generated during execution.

-O1
Optimized to favor code size and 
code locality and disables loop 
unrolling, software pipelining, and 
global code scheduling.
-O2
Default; turns pipelining ON.

Floating point Set of switches that allows the 
compiler to influence the selection 
and use of floating-point 
instructions.

-fschedule-insns
Tells the compiler that other 
instructions can be issued until the 
results of a floating-point 
instruction are required.
-float-store
Tells the compiler that when 
generating object code do not use 
instructions that would store a 
floating-point variable in registers.
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Compiler Switch 
Options Description Examples of Usage

Loop unrolling This option enables loop 
unrolling. This applies only to loops 
that the compiler determines should 
be unrolled. If n is omitted, lets the 
compiler decide whether to perform 
unrolling or not.

-unroll<n>
Enables loop unrolling; <n> sets the 
maximum time to unroll the loop.
n = 0
Disables loop unrolling, only 
allowable value for 64-bit 
architectures.

Memory bandwidth This option enables or disables 
control of memory bandwidth 
used by processors; if disabled, 
bandwidth will be well shared 
among multiple threads. This can be 
used with the auto parallelization 
option. This option is used for 64-bit 
architectures only.

-opt-mem-bandwidth<n>
n = 2
Enables compiler optimizations for 
parallel code such as pthreads and 
MPI code.
n = 1
Enables compiler optimizations for 
multithreaded code generated by 
the compiler.

Code generation With this option code is generated 
optimized for a particular 
architecture or processor; if there is a 
performance benefit, the compiler 
generates multiple, processor-
specific code paths; used for 32- and 
64- bit architectures.

-ax<processor>
Generates optimized code for the 
specified processor.
-axS
Generates specialized code paths 
using SIMD Extensions 4 (SSE4) 
vectorizing compiler and media 
accelerators instructions.

Thread checking This option enables thread analysis 
of a threaded application of 
program; can only be used with 
Intel’s Thread Checker tool.

-tcheck
Enables analysis of threaded 
application or program.

Thread library This option causes the compiler 
to include code from the Thread 
Library; The programmer needs to 
include API calls in source code.

-pthread
Uses the pthread library for 
multithreading support.

  The  CPU  (Instruction Set) 
 A CPU has a native instruction set that it recognizes and executes. It ’ s the C++ compiler ’ s job to translate 
C++ program code to the native instruction set of the target platform. The compiler converts the C++ 
and produces an object file that consists of only instructions that are native to the target processor. 
Figure  1 - 3  shows an outline of the basic compilation process.   
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 During the process of converting C++ code into the native language of the target CPU, the compiler has 
options for how to produce the object code. The compiler can be used to help determine how registers 
are used, or whether to perform loop unrolling. The compiler has options that can be set to determine 
whether to generate 16 - bit, 32 - bit, or 64 - bit object code. The compiler can be used to select the memory 
model. The compiler can provide code hints that declare how much level 1 (L1) or level 2 (L2) cache is 
present. Notice in Table  1 - 1  in the floating - point operations category that switches from this category 
allow the compiler to influence the selection of floating - point instructions. For example, the GNU gcc 
compiler has the   -  - float - store  switch. This switch tells the compiler that when generating object code 
it should not use instructions that would store floating - point variable in registers. The Sun C++ compiler 
has a   - fma  switch. This switch enables automatic generation of floating - point and multi - add 
instructions. The   - fma=none  disables generation of these instructions. The   - fma=fused  switch allows 
the compiler to attempt to improve the performance of the code by using floating - point, fused, and 
 multiply=add  instructions. In both cases, the switches are provided as options to the compiler: 

gcc  -ffloat-store my_program.cc  

 or 

CC -fma=used  my_program.cc  

 Other switches influence cache usage. For instance the Sun C++ compiler has a   - xcache=c  that defines 
the cache properties for use by the optimizer. The GNU gcc compiler has the   - Funroll  - loops  that 
specifies how loops are to be unrolled. The GNU gcc compiler has a   - pthread  switch that turns on 
support for multithreading with pthreads. The compilers even have options for setting the typical 
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memory reference interval using the   - mmemory - latency=time  switch. In fact, there are compiler 
options and switches that can influence the use of any of the components in Figure  1 - 2 . 

 The fact that the compiler provides access to the processor has implications for the developer who is 
writing multicore applications for a particular target processor or a family of processors. For example, 
The UltraSparc, Opteron, Intel Core 2 Duo, and Cell processors are commonly used multicore 
configurations. These processors each support high - speed vector operations and calculations. They have 
support for the Single Instruction Multiple Data (SIMD) model of parallel computation. This support can 
be accessed and influenced by the compiler.     

 Chapter  4  contains a closer look at the part compilers play in multicore development.   

 It is important to note that using many of these types of compiler options cause the compiler to optimize 
code for a particular processor. If cross - platform compatibility is a design goal, then compiler options 
have to be used very carefully. For system programmers, library producers, compiler writers, kernel 
developers, and database and server engine developers, a fundamental understanding of the basic 
processor architecture, instruction set and compiler interface is a prerequisite for developing effective 
software that takes advantage of CMP.  

  Memory Is the Key 
 Virtually anything that happens in a computer system passes through some kind of memory. Most things 
pass through many levels of memory. Software and its associated data are typically stored on some kind 
of external medium (usually hard disks, CD - ROMs, DVDs, etc.) prior to its execution. For example, say 
you have an important and very long list of numbers stored on an optical disc, and you need to add 
those numbers together. Also say that the fancy program required to add the very long list of numbers is 
also stored on the optical disc. Figure  1 - 4  illustrates the flow of programs and data to the processor.   
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Figure 1-4
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 In the maze of different types of memory, you have to remember that the typical CPU operates only on 
data stored in its registers. It does not have the capacity to directly access data or programs stored 
elsewhere. Figure  1 - 4  shows the ALU reading and writing the registers. This is the normal state of affairs. 
The instruction set commands (native language of the processor) are designed to primarily work with 
data or instructions in the CPU ’ s registers. To get your long list of important numbers and your fancy 
program to the processor, the software and data must be retrieved from the optical disc and loaded into 
primary memory. From primary memory, bits and pieces of your software and data are passed on to L2 
cache, then to L1 cache, and then into instruction and data registers so that the CPU can perform its 
work. It is important to note that at each stage the memory performs at a different speed. Secondary 
storage such as CD - ROMs, DVDs, and hard disks are slower than the main random access memory 
(RAM). RAM is slower than L2 cache memory. L2 cache memory is slower than L1 cache memory, and so 
on. The registers on the processor are the fastest memory that you can directly deal with. 

 Besides the speed of the various types of memory, size is also a factor. Figure  1 - 5  shows an overview of 
the memory hierarchy.   
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FASTER
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Figure 1-5

 The register is the fastest but has the least capacity. For instance, a 64 - bit computer will typically have a 
set of registers that can each hold up to 64 bits. In some instances, the registers can be used in pairs 
allowing for 128 bits. Following the registers in capacity is L1 cache and if present L2 cache. L2 cache is 
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currently measured in megabytes. Then there is a big jump in maximum capacity from L2 to the system 
main memory, which is currently measured in gigabytes. In addition to the speeds of the various types 
of memory and the capacities of the various types of memory, there are the connections between the 
memory types. These connections turn out to have a major impact on overall system performance. Data 
and instructions stored in secondary storage typically have to travel over an I/O channel or bus to get to 
RAM. Once in RAM, the data or instruction normally travels over a system bus to get to L1 cache. The 
speed and capacity of the I/O buses and system buses can become bottlenecks in a multiprocessor 
environment. As the number of cores on a chip increases, the performance of bus architectures and 
datapaths become more of an issue. 

 We discuss the bus connection later in this chapter, but first it ’ s time to examine the memory hierarchy 
and the part it plays in your view of multicore application development. Keep in mind that just as you 
can use the influence that the compiler has over instruction set choices, you can use it to manipulate 
register usage and RAM object layouts, give cache sizing hints, and so on. You can use further C++ 
language elements to specify register usage, RAM, and I/O. So, before you can get a clear picture of 
multiprocessing or multithreading, you have to have a fundamental grasp of the memory hierarchy that 
a processor deals with.  

  Registers 
 The  registers  are special - purpose, small but fast memory that are directly accessed by the core. The 
registers are volatile. When the program exits, any data or instructions that it had in its registers are gone 
for all intents and purposes. Also unlike swap memory, or virtual memory, which is permanent because 
it is stored in some kind of secondary storage, the registers are temporary. Register data lasts only as 
long as the system is powered or the program is running. In general - purpose computers, the registers are 
located inside the processor and, therefore, have almost zero latency. Table  1 - 2  contains the general types 
of registers found in most general - purpose processors.   

Table 1-2

Registers Description

Index Used in general computations and special uses when dealing with addresses.

Segment Used to hold segment parts of addresses.

IP Used to hold the offset part of the address of the next instruction to be executed.

Counter Used with looping constructs, but can also be used for general computational 
use.

Base Used in the calculation and placement of addresses.

Data Used as general-purpose registers and can be used for temp storage and 
calculation.

Flag Shows the state of the machine or state of the processor.

Floating point Used in calculation and movement of floating-point numbers.
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 Most C/C++ compilers have switches that can influence register use. In addition to compiler options 
that can be used to influence register use, C++ has the  asm{ }  directive, which allows assembly 
language to written within a C++ procedure or function, for example: 

void my_fast_calculation(void)
{
   ...
     asm{
            ...
            mov 2 , %r3
            inc(%r3)
            ...
      }
       ...
}  

  my_fast_calculation()  loads a  2  into the  %r3  general - purpose register on an UltraSparc processor. 
While cache is not easily visible for C++, registers and RAM are visible. Depending on the type of 
multiprocessor software being developed, register manipulation, either through the compiler or the C++ 
 asm{}  facility, can be necessary.  

  Cache 
  Cache  is memory placed between the processor and main system memory (RAM). While cache is not as 
fast as registers, it is faster than RAM. It holds more than the registers but does not have the capacity of 
main memory. Cache increases the effective memory transfer rates and, therefore, overall processor 
performance. Cache is used to contain copies of recently used data or instruction by the processor. Small 
chunks of memory are fetched from main memory and stored in cache in anticipation that they will be 
needed by the processor. Programs tend to exhibit both temporal locality and spatial locality.   

   Temporal locality  is the tendency to reuse recently accessed instructions or data.  

   Spatial locality  is the tendency to access instructions or data that are physically close to items 
that were most recently accessed.    

 One of the primary functions of cache is to take advantage of this temporal and spatial locality 
characteristic of a program. Cache is often divided into two levels, level 1 and level 2.     

 A complete discussion of cache is beyond the scope of this book. For a thorough discussion of cache, see 
[Hennessy, Patterson, 2007].   

  Level 1 Cache 
 Level 1 cache is small in size sometimes as small as 16K. L1 cache is usually located inside the processor 
and is used to capture the most recently used bytes of instruction or data.  

  Level 2 Cache 
 Level 2 cache is bigger and slower than L1 cache. Currently, it is stored on the motherboard (outside the 
processor), but this is slowly changing. L2 cache is currently measured in megabytes. L2 cache can hold 
an even bigger chunk of the most recently used instruction, data, and items that are in the near vicinity 
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than L1 holds. Because L1 and L2 are faster than general - purpose RAM, the more correct the guesses of 
what the program is going to do next are, the better the overall system performance because the right 
chunks of data will be located in either L1 or L2 cache. This saves a trip out to either RAM or virtual 
memory or, even worse, external storage.  

  Compiler Switches for Cache? 
 Most developers doing multicore application development will not be concerned with manually 
managing cache unless, of course, they are doing kernel development, compiler development, or other 
types of low - level system programming. However, compiler options that give the compiler a hint as to 
how much L1 or L2 cache is available or a hint about the properties of the L1 or L2 cache can be found in 
most of the mainstream compilers in use. For example, the Sun C++ compiler has an  xcache  switch. The 
man page for that switch shows the syntax and its use. 

   - xcache=c  defines the cache properties that the optimizer can use. It does not guarantee that any 
particular cache property is used. Although this option can be used alone, it is part of the expansion of 
the   - xtarget  option; its primary use is to override a value supplied by the   - xtarget  option. 

   - xcache=16/32/4:1024/32/1  specifies the following:

    Level 1 cache has:    Level 2 cache has:  

    16K bytes    1024K bytes  

    32 - byte line size    32 - byte line size  

    4 - way associativity    Direct mapping  

 Developing software to truly take advantage of CMP requires careful thought about the instruction set of 
the target processor or family of processors and about memory usage. This includes being aware of 
opportunities for optimizations, such as loop unrolling, high - speed vector manipulations, SIMD processing, 
and MP compiler directives, and giving compilers hints for values such as the size of L1 or L2 cache.   

  Main Memory 
 Figure  1 - 2  shows the relative relationship between registers, cache, the ALU, and main memory. Outside 
of external storage (for example, hard disks, CD - ROMs, DVDs, and so on), RAM is the slowest memory 
the developer works with. Also RAM is located physically outside the processor, and data transfers 
across a bus to the processor slow things down a little more. On the other hand, RAM is the most visible 
to you as a software developer of multithreaded or multiprocessing applications. The data shared 
between processors and tasks in most cases is stored in RAM. The instructions that each processor has to 
execute are kept in RAM during runtime. The critical sections that must be synchronized among 
multiple processors are primarily stored in RAM. When there is task or processor lockup, it is normally 
due to some memory management violation. In almost every case, the communication between 
processors and tasks, or multiple agents, will take place through variables, message queues, containers, 
and mutexes that will reside in RAM during runtime. A major element in the software developer ’ s view 
of multicore application programming is memory access and management. Just as was the case with the 
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other logical components shown in Figure  1 - 2  that have been discussed so far, you have access to 
compiler switches that influence how memory is handled by an application. The memory model selected 
is important. Objects created by the  new()  operator in C++ end up in either the free store (heap) or in 
virtual memory (if the data object is large enough). The free store is logically in RAM. Virtual memory is 
mapped from external storage.     

 We take a closer look at how a process or thread uses RAM in Chapter  5 .     

  The Bus Connection 
 Typically the subsystems in a computer communicate using buses. The  bus  serves as a shared 
communication link between the subsystems [Hennessy, Patterson, 1996]. The bus is a channel or path 
between components in a computer. Traditionally, buses are classified as CPU - memory buses or I/O 
buses. A basic system configuration consists of two main buses, a system bus also referred to as the Front 
Side Bus (FSB), and an I/O bus. If the system has cache, there is also usually a Back Side Bus (BSB) 
connected to the processor and the cache. Figure  1 - 6  shows a simplified processor - to - bus configuration.   

FSB

I/O
CONTROLLER

MEMORY
CONTROLLER

CPU

CACHEAGP

PCI

BSB

Figure 1-6

 In Figure  1 - 6  the FSB is used to transport data to or from the CPU and memory. The FSB is a 
CPU - memory bus. The I/O bus generally sends information to and from other peripherals. Notice in 
Figure  1 - 6  that the BSB is used to move data between the CPU, cache, and main memory. The Peripheral 
Component Interconnect (PCI) is an example of an I/O bus. The PCI provides a direct connection to the 
devices that it is connected to. However, the PCI is usually connected to the FSB through some type of 
bridge technology. Since the buses provide communication paths between the CPU, the memory 
controller, the I/O controller, cache, and peripherals, there is the potential for throughput bottlenecks. 
Configurations with multiple processors can put a strain on the FSB. The trend is to add more processors 
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to a chip. This puts more communication demands on bus - based architectures. The performance of the 
system is constrained by the maximum throughput of the buses used between the CPU, memory, and 
other system peripherals. If the bus is slower than the CPU or memory or the buses do not have the 
proper capacity, timing, or synchronization, then the bus will be a bottleneck, impeding overall system 
performance.  

  From Single Core to Multicore 
 In single core configurations you are concerned only with one (general - purpose) processor, although it ’ s 
important to keep in mind that many of today ’ s single core configurations contain special graphic 
processing units, multimedia processing units, and sometimes special math coprocessors. But even with 
single core or single processor computers multithreading, parallel programming, pipelining, and 
multiprogramming are all possible. So this section can help clear the air on some of the basic ideas that 
move you from single core to multicore programming. 

  Multiprogramming and Multiprocessing 
 Multiprogramming is usually talked about in the context of operating systems as opposed to 
applications.  Multiprogramming  is a scheduling technique that allows more than one job to be in an 
executable state at any one time. In a multiprogrammed system, the jobs (or processes) share system 
resources such as the main system memory and the processor. There is an illusion in a single core system 
that the processes are executing simultaneously because the operating system uses the technique of time 
slices. In the time slice scheme, each process is given a small interval to execute. After that interval, the 
operating system switches contexts and lets another process execute for an interval. These intervals are 
called time slices, and they are so small that the operating system switches the context fast enough to 
give the illusion that more than one process or job is executing at the same time. So in a scenario where 
you have single core architecture and two major tasks are being performed concurrently (for example, 
burning a DVD and rendering a computer graphic), you say that the system is multiprogramming. 

 Multiprogramming is a scheduling technique. In contrast, a  multiprocessor  is a computer that has more 
than one processor. In this case, you are specifically referring to the idea of having two or more general -
 purpose processors. Technically speaking, a computer with a CPU and a GPU is a multiprocessor. But for 
the purposes of this discussion, we focus instead on multiple general - purpose processors. Consequently, 
 multiprocessing  is a technique of programming that uses more than one processor to perform work 
concurrently. In this book we are interested in techniques that fall under the category of parallel 
programming.  

  Parallel Programming 
  Parallel programming  is the art and science of implementing an algorithm, a computer program, or a 
computer application, using sets of instructions or tasks designed to be executed concurrently. Figure  1 - 7  
illustrates the parts of each type and what is executed in parallel.   
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WITH PARALLEL COMPONENTS 

Figure 1-7

 The parallel algorithm in Figure  1 - 7  can execute a set of instructions in parallel. Instruction 1 and 
Instruction 2 can both be executed concurrently. Instruction 5 and 6 can both be executed concurrently. 
In the algorithm, the parallelism happens between two instructions. This is in contrast to the computer 
program in Figure  1 - 7 , where the unit of work is a procedure or function, or thread. Procedure A and 
Procedure B can execute simultaneously. In addition to the concurrency between Procedure A and B, they 
may both have concurrency within themselves. Procedure A ’ s functions may be able to execute in parallel. 
So for the computer program that contains parallelism, the unit of work is larger than the algorithm. 

 The application in Figure  1 - 7  has the largest unit of work. Task A and Task B may consist of many 
procedures, functions, objects, and so on. When you look at the parallel programming at the application 
level, you are talking about larger units of work. Besides tasks, the application might contain 
subsystems, for example, background network components or multimedia components that are 
executing simultaneously in background to the set of tasks that the user can perform. The key idea here 
is that each structure in Figure  1 - 7  uses parallel programming; the difference is the unit of work, 
sometimes called  granularity .     

 We talk more about levels of parallelism in Chapter  4 .    

  Multicore Application Design and Implementation 
 Multicore application design and implementation uses parallel programming techniques to design 
software that can take advantage of CMP. The design process specifies the work of some task as either 
two or more threads, two or more processes, or some combination of threads and processes. That design 
can then be implemented using template libraries, class libraries, thread libraries, operating system calls, 
or low - level programming techniques (for example, pipelining, vectorization, and so on). This book 
introduces the basics of multithreading, multiprocessing, Interprocess Communication, Interthread 
Communication, synchronization, thread libraries, and multithreading class libraries or template 
libraries. The low cost of CMP implementations has brought parallel programming and its very close 
cousin multithreading within the reach of the average developer. The focus on this book is on 
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developing multicore applications using multiprocessing and multithreading techniques that are 
portable across operating system environments. We use only libraries and language features that are part 
of the POSIX standard for operating systems and only C++ features that are part of the ISO standard.   

  Summary 
 This chapter has covered key concepts that you need to understand as you consider developing 
multicore application. Some of the important considerations this chapter introduced are: 

  A multicore chip is a chip that has two or more processors. This processor configuration is 
referred to as CMP. CMPs currently range from dual core to octa - core.  

  Hybrid multicore processors can contain different types of processors. The Cell broadband 
engine is a good example of a hybrid multicore.  

  Multicore development can be approached from the bottom up or top down, depending on 
whether the developers in question are system programmers, kernel programmers, library 
developers, server developers, or application developers. Each group is faced with similar 
problems but looks at the cores from a different vantage point.  

  All developers that plan to write software that takes advantage of multiprocessor configurations 
should be familiar with the basic processor architecture of the target platform. The primary 
interface to the specific features of a multicore processor is the C/C++ compiler. To get the most 
from the target processor or family of target processors, the developer should be familiar with 
the options of the compiler, the assembler subcomponent of the compiler, and the linker. The 
secondary interface comprises the operating system calls and operating system synchronization 
and communication components.  

  Parallel programming is the art and science of implementing an algorithm, a computer program, 
or a computer application using sets of instructions or tasks designed to be executed 
concurrently. Multicore application development and design is all about using parallel 
programming techniques and tools to develop software that can take advantage of CMP 
architectures.    

 Now that you have in mind some of the basic ideas and issues surrounding multicore programming, 
Chapter  2  will take a look at four multicore designs from some of the computer industry ’ s leading chip 
manufacturers: AMD, Intel, IBM, and Sun. We look at each approach to CMP for the Dual Core Opteron, 
Core 2 Duo, Cell Broadband Engine architecture, and UltraSparc T1 multiprocessor cores.                 
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                                                Four Effective Multicore 
Designs              

  Please. As I was saying, she stumbled upon a solution whereby nearly ninety - nine 
percent of all test subjects accepted the program as long as they were given a choice, 
even if they were only aware of the choice at a near unconscious level.   

  — The Architect,  The Matrix Reloaded     

 In this chapter we take a closer look at four multicore designs from some of the computer 
industry ’ s leading chip manufacturers: 

  The AMD Multicore Opteron  

  The Sun UltraSparc T1  

  The IBM Cell Broadband Engine (CBE)  

  The Intel Core 2 Duo    

 Each of these vendors approaches the Chip Multiprocessor (CMP) differently. Their approaches to 
multicore design are implemented effectively with each design having its advantages, strengths, 
and weaknesses in comparison to the other designs. We will use these designs for all of the 
examples in this book. The program examples in this book have been compiled and executed on 
one or more of these multicore processor designs. In this chapter, we introduce you to the basics of 
each design, and throughout the book we fill in the necessary detail as it pertains to multicore 
application development and design. 

 In many mass market software applications, the differences among hardware implementations are 
abstracted away because often one of the primary design goals is to make the software compatible 
with as many different hardware platforms as possible. So there is a conscious effort to avoid 
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Table 2-1

Software Type Developer Type

High transaction software servers
• Database
• Financial transaction servers
• Application servers and so on

• Software architects
• Software vendors
• Software manufacturers

Kernels • System programmers

Game engines • System programmers
• Software designers
• Game developers
• Graphics programmers

Device drivers • System programmers

Large-scale matrix and vector computations • Scientific programmers
• Mathematicians
• Scientific application developers

Compilers • System programmers

Database engines • Software vendors
• Database architects

High-definition computer animation

Scientific visualization modeling

• Graphics programmers
• Game developers
• Scientific programmers

platform - specific features. In these scenarios, the software designer and developer appropriately rely on 
the operating system to hide any platform differences that the applications might encounter. The 
developers move happily and blissfully through the development process without the burden of having 
to worry about hardware - specific issues. This is a good thing! One of the primary jobs of the operating 
system is to hide and manage hardware details. And this approach works for an entire class of mass 
market or wide vertical market applications. 

 However, not every kind of software developer is so lucky. For example, those developing high -
 transaction database servers, web servers, application servers, hardware - intensive game engines, 
compilers, operating system kernels, device drivers, and high - performance scientific modeling and 
visualization software are practically forced to look for and exploit platform features that will make their 
applications acceptable to the end user. For this class of developer, familiarity with a specific processor or 
family of processors is a prerequisite for effective software development. Table  2 - 1  lists the types of 
applications that can require platform - specific optimization.   
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 In Table  2 - 1 , we have also listed some of the types of developers involved with these types of applications. 
System programmers, graphics programmers, application developers, and software engineers who are 
trying to optimize the performance of a piece of software need to be aware of the capabilities of the target 
platform. In the cases where cross - platform portability is the primary consideration, platform - specific 
optimizations should be approached with caution. In other cases, cross - platform compatibility is not a 
concern, and the best performance on the target platform is the goal. In these situations the more the 
developer knows about the target processor or family of processors the better. 

 In this book, we look at top - down and bottom - up approaches to multiprocessor application design and 
implementation. To take advantage of bottom - up approaches to multiprocessor programming requires a 
fundamental understanding of the CMP architecture, the operating system ’ s support for multithreading 
and multiprocessing, and the C/C++ compiler for the target platform. In Chapter  4 , we take a closer look 
at operating system and compiler support for multicore development. But first here in this chapter we 
explore the four effective multicore designs we mentioned at the start of the chapter. Table  2 - 2  shows a 
comparison of the Opteron, UltraSparc T1, CBE, and Core 2 Duo processors.    

Table 2-2

Processor Name Hyperthreaded/SMT Use FSB Shared Memory
Cache 2 
Location # Cores

Opteron No No No motherboard 2

UltraSparc T1 Yes No No die 8

CBE Yes No Yes die 9

Core 2 Duo No Yes Yes die 2

  The  AMD  Multicore Opteron 
 The dual core Opteron is the entry level into AMD ’ s multicore processor line. The dual core Opteron 
is the most basic configuration, and it captures AMD ’ s fundamental approach to multicore architectures. 
The Opteron is source and binary code compatible with Intel ’ s family of processors, that is, applications 
written for the Intel processors can compile and execute on Opterons. Figure  2 - 1  shows a simple block 
diagram of a dual core Opteron.   
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 The dual core Opteron consists of two AMD 64 processors, two sets of level 1 (L1) cache, two sets of level 
2 (L2) cache, a System Request Interface (SRI), a crossbar switch, a memory controller, and 
HyperTransport technology. One of the key architectural differences between the Opteron and other 
designs is AMD ’ s Direct Connect Architecture (DCA) with HyperTransport technology. The Direct 
Connect Architecture determines how the CPUs communicate with memory and other I/O devices.     

 To understand the value of AMD ’ s approach to subsystem communication, it ’ s important to remember 
what part bus technology plays in the processor architecture. See the section  “ The Bus Connection ”  in 
Chapter  1  for more information on bus technology.   

  Opteron ’ s Direct Connect and HyperTransport 
 The Opteron processor moves away from this bus - based architecture. It uses a Direct Connect 
Architecture (DCA) in conjunction with HyperTransport (HT) technology to avoid some of the 
performance bottlenecks of the basic Front Side Bus (FSB), Back Side Bus (BSB), and Peripheral 
Component Interconnect (PCI) configurations. 

  The Direct Connect Architecture 
 The DCA is a point - to - point connection scheme. It does not use the FSB. Instead the processors, memory 
controller, and I/O are directly connected to the CPU. This dedicated link approach avoids the potential 
performance problems of the bus - based communication between the CPU and the memory controller. 
Also because the links are dedicated  —  that is, each core is directly connected to its own memory 
controller and has direct links to the I/O memory controller  —  contention issues are bypassed.  
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  HyperTransport Technology 
 The HyperTransport Consortium defines HyperTransport as a high - speed, low - latency, point - to - point 
link designed to increase the communication speed between integrated circuits in computers, servers, 
embedded systems, and networking and telecommunications equipment. According to the 
HyperTransport Consortium, HT is designed to: 

  Provide significantly more bandwidth  

  Use low - latency responses and low pin counts  

  Maintain compatibility with legacy buses while being extensible to new network architecture 
buses  

  Appear transparent to operating systems and have little impact on peripheral drivers    

 The Opteron uses HT as a chip - to - chip interconnection between CPU and the I/O. The components 
connected with HT are connected in a peer - to - peer fashion and are, therefore, able to communicate with 
each other directly without the need of data buses. At peak throughput the HT provides 12.8 GB/s per 
link. The Opteron configuration comes configured with up four HT Links. I/O devices and buses such as 
PCI - E, AGP, PCI - X, and PCI connect to the system over HT Links. The PCIs are I/O buses, and the AGP 
is a direct graphics connection. The PCI, PCI - E, and AGP are used to connect the system to peripheral 
devices. Besides improving the connections between the processors and I/O, HT is also used to facilitate 
a direct connection between the processors on the Opteron. Multicore communication on the Opteron is 
enhanced by using HT.   

  System Request Interface and Crossbar 
 The System Request Interface (SRI) contains the system address map and maps memory ranges to nodes. 
If the memory access is to local memory, then a map lookup in the SRI sends it to the memory controller 
for the appropriate processor. If the memory access is not local (off chip), then a routing table lookup sends 
it to a HT port. For more see [Hughes, Conway, 2007 IEEE]. Figure  2 - 2  shows a logic layout of the crossbar.   
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LOGICAL DATA CROSSBAR

HT 0 HT 1 HT 2 MEMORY
CONTROLLER

SYSTEM
REQUEST
INTERFACE

DUAL CORE OPTERON'S CROSSBAR SWITCH
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Figure 2-2

 The crossbar has five ports: memory controller, SRI, and three HTs. The crossbar switch processing is 
logically separated into command header packet processing and data header packet processing. 
Logically, part of the crossbar is dedicated to command packet routing, and the other part is dedicated to 
data packet routing.  

c02.indd   23c02.indd   23 7/31/08   2:44:09 PM7/31/08   2:44:09 PM



Chapter 2:                                                 Four Effective Multicore Designs          

24

  The Opteron Is  NUMA  
 Opteron has a Non - Uniform Memory Access (NUMA) architecture. In this architecture, each processor 
has access to its own fast local memory through the processor ’ s on - chip memory controller. NUMA 
architecture has a distributed but shared memory architecture. This is in contrast to the Uniform 
Memory Access (UMA) architecture. Figure  2 - 3  shows a simplified overview of a UMA architecture.   

CPU 0

L1 CACHE

L2 CACHE

CPU 1

L1 CACHE

L2 CACHE

SYSTEM MAIN MEMORY

Figure 2-3

 Notice in Figure  2 - 3  that the processors share a single memory. Each of the access times for each 
processor is symmetric with the other. The processor configuration in Figure  2 - 3  is often called a 
symmetric (shared - memory) multiprocessor (SMP). This arises from the fact that all processors have a 
uniform latency from memory even if the memory is organized into multiple banks [Hennessy, 
Patterson, 2007]. The single main memory and the uniform access time in the SMP makes it easier to 
implement than it NUMA counterpart. Also the notion of a shared address space is more straightforward 
in the UMA architecture because there is only one main system memory to consider. 

 In contrast, Figure  2 - 4  shows a simplified overview of a NUMA architecture.   
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 The NUMA is a distributed shared memory (DSM) architecture. Notice in Figure  2 - 4  that each processor 
has its own block memory, but each block of memory shares a single address space. That is, the same 
physical address on two processors refers to the same location in memory [Hennessy, Patterson, 2007]. In 
both cases, the UMA and the NUMA configurations, the processors share address space. However, in the 
NUMA architecture the address space is shared from a logical viewpoint, and in the UMA configuration 
the processors physically share the same block of memory. The SMP architecture is satisfactory for 
smaller configurations, but once the number of processors starts to increase, the single memory 
controller can become a bottleneck and, therefore, degrade overall system performance. The NUMA 
architecture, on the other hand, scales nicely because each processor has its own memory controller. 

 If you look at the configuration in Figure  2 - 4  as a simplified Opteron configuration, then the network 
interconnection is accomplished by the Opteron HyperTransport technology. Using the HyperTransport 
technology, the CPUs are directly connected to each other and the I/O is directly connected to the CPU. 
This ultimately gives you a performance gain over the SMP configuration.  

  Cache and the Multiprocessor Opteron 
 The dual core Opteron supports two levels of cache. L1 cache can be logically divided between I - Cache 
(for instructions) and D - Cache (for data). Each core has its own L1 cache. Each core in the Opteron also 
has its own 1MB L2 cache between the processor and main system memory.   

  The Sun UltraSparc T1 Multiprocessor 
 The UltraSparc T1 is an eight - core CMP and has support for chip - level multithreading (CMT). Each core 
is capable of running four threads. This is also sometimes referred to as hyperthreaded. The CMT of the 
UltraSparc T1 means that the T1 can handle up to 32 hardware threads. What does this mean for the 
software developer? Eight cores with four threads presents itself to an application as 32 logical 
processors. Listing  2 - 1  contains code that can be used to see how many processors are apparently 
available to the operating system (without special compilers and so on). 

   Listing 2 - 1  

// Listing 2-1
// uses sysconf() function to determine how many
// processors are available to the OS.
                    
using namespace std;
#include  < unistd.h > 
#include  < iostream > 
                    
int main(int argc,char *argv[])
{
   cout  <     <  sysconf(_SC_NPROCESSORS_CONF)  <     <  endl;
   return(0);
}       
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 When appropriate, in this book listings are accompanied by a program profile stating the environment 
platform for the program. Anyone wishing to run code for a noncompliant OS needs to use the 
POSIX - compliant features for that OS.   

  Program Profile 2 - 1 
  Program Name:   

program2-1.cc   

  Description: 
 This program uses  sysconf()  function to determine how many processors are available to the operating 
system.  

  Libraries Required: 
 None  

  Headers Required:   
 < unistd.h >     < iostream >    

  Compile and Link Instructions:   
g++ -o program2-1 program2-1.cc   

  Test Environment: 
 SuSE Linux 10, gcc 3.4.3  

  Hardware: 
 AMD Opteron Core 2, UltraSparc T1, CBE  

  Execution Instructions:   
./program2-1   

  Notes: 
 None 

 When this program is executed on a T1, it prints 32. The  sysconf()  function provides a method for an 
application to get values for system limits or variables. In this case the  _SC_NPROCESSORS_CONF  
argument asks for the number of processors configured. The  _SC NPROCESSORS_MAX  argument can be 
used to get the maximum number of processors supported. The UltraSparc T1 offers the most on - chip 
threads of the architectures that we discuss in the book. Each of the eight cores equates to a 64 - bit 
execution pipeline capable of running four threads. Figure  2 - 5  contains a functional overview of an 
UltraSparc T1 multiprocessor.     
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  UltraSparc T1 Cores 
 The T1 consists of eight Sparc V9 cores. The V9 cores are 64 - bit technology. Each core has L1 cache. 
Notice in Figure  2 - 5  that there is a 16K L1 instruction cache and an 8K L1 data cache. The eight cores all 
share a single floating - point unit (FPU). Figure  2 - 5  shows the access path of the L2 cache and the eight 
cores. The four threads share L2 cache. Each core has a six - stage pipeline: 

  Fetch  

  Thread selection  

  Decode  

  Execute  

  Memory access  

  Write back     

  Cross Talk and The Crossbar 
 Notice in Figure  2 - 5  that the cores and the L2 cache are connected through the cross - switch or crossbar. 
The crossbar has 132 GB/s bandwidth for on chip communications. The crossbar has been optimized for 
L2 cache - to - core communication and for core - to - L2 cache communication. The FPU, the four banks of L2 
cache, the I/O bridges, and the cores all communicate through the crossbar. Basically the crossbar acts as 
the mediator, allowing the components of the T1 to communicate to each other.  
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   DDRAM  Controller and L2 Cache 
 The UltraSparc T1 has four separate memory controllers. Each controller is connected to one bank of L2 
cache. The L2 cache is divided on the T1 into four banks. The T1 can support up to 128GB of RAM.  

  UltraSparc T1 and the Sun and  GNU  gcc Compilers 
 We introduce the architecture of the UltraSparc T1 to contrast it with that of the AMD Opteron, IBM Cell 
Broadband architecture, and the Intel Core 2 Duo. While each of these architectures is multicore, the 
different implementations are dramatic. From the highest level, an application designed to take 
advantage of multicore will see them all as a collection of two or more processors. However, from an 
optimization point of view, there is much more to take into consideration. Two of the most commonly 
used compilers for the UltraSparc T1 are the Sun C/C++ compiler (part of Sun Studio) and the GNU gcc, 
the standard open source C/C++ compiler. While Sun ’ s compilers obviously have the best support for 
their processors, GNU gcc has a great deal of support for T1, with options that take advantage of threads, 
loop unrolling, vector operations, branch prediction, and Sparc - specific platform options. Virtually all of 
the program examples in this book have been compiled and executed on a SunFire 2000 with an eight -
 core T1 processor. Look at the program profiles for the program listings, and you will see which compiler 
switches we explored for the T1.   

  The  IBM  Cell Broadband Engine 
 The CBE is a heterogeneous multicore chip. It is a heterogeneous architecture because it consists of two 
different types of processors: PowerPC Processing Element (PPE) and Synergistic Processor Element 
(SPE). The CBE has one PPE and eight SPEs, one high - speed memory controller, one high - bandwidth 
element interconnect bus, high - speed memory, and I/O interfaces all integrated on - chip. This makes it a 
kind of hybird nine - core processor. Figure  2 - 6  shows an overview of the CBE processor.   
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 Most of the common CMPs have homogeneous processors, that is, ones with the same instruction set. 
The processors on the CBE have two different instruction sets. Although each of the processor elements 
has been optimized for certain types of operations, both types of elements can be used for general -
 purpose computing.   

  The first element in the Cell processor is a 64 - bit PowerPC processor. This element complies 
fully with the 64 - bit PowerPC architecture and can execute either 32 - bit or 64 - bit operating 
systems and applications.  

  The second type of processor element is the SPE. The SPEs have been optimized for running 
Single Instruction Multiple Data (SIMD) applications.    

 Although there are several commercial scientific uses of the CBE, its most common use is as the 
processor for Sony ’ s Playstation 3. 

   CBE  and Linux 
 We selected the CBE as one of our four effective multicore architecture designs because it is able to 
deliver so much performance in a Linux environment. The Playstation 3 is a flexible device and comes 
with ready - to - install Linux. Currently, there is a Fedora and a Yellow Dog distribution of Linux for the 
CBE. The low cost of the Playstation 3 (PS3) brings heterogeneous multicore application development 
into reach of virtually any software developer. The PPE element and the SPEs can be programmed using 
the standard GNU gcc compiler. There is a CBE SDK available for downloading from IBM that includes 
tools necessary to compile the SPE code. Basically, the SPE code is compiled separately and then linked 
with the PPE code to form a single execution unit. The PPE and SPEs act cooperatively, with both 
bringing specialties to the table. Typically, the SPEs use the PPE to run the operating system code and in 
most applications the main or top - level thread. The PPE (the general purpose processor) uses the SPEs as 
the application ’ s high - performance workhorse. The SPEs have good support for SIMD operations, 
computer - intensive applications, and vector type operations. When you execute the code from Listing  
2 - 1  on the CBE, the number printed to the console is 2. This is because the SPEs are directly accessible. 
The 2 represents the fact that the PPE is a CMT; it is a dual thread processor. So in the right configuration, 
you can have multiple logical processors (including the SPEs) available in a CBE configuration. The 
heterogeneous architecture also makes for some interesting design choices. 

 While standard POSIX threads (pthreads) and process management can be used with the PPE element, 
the SPE has to be programmed using the thread library that ’ s available as part of the CBE SDK. The good 
news is the SPE thread calls are designed to be compatible with pthreads and require no learning curve 
for developers who are familiar with the pthread library.  

   CBE  Memory Models 
 The PPE accesses memory differently than the SPEs. Although there is only a single memory flow 
controller, the CBE avoids the normal single bus bottleneck potentials because the SPEs each have their 
own local memory. Figure  2 - 7  shows the memory configurations for the PPE and the SPE.   
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 The SPE configuration is where most of the savings come in. The SPE has a three - level memory access. 
It uses its local store, register files, and direct memory access (DMA) transfers to main memory. This 
three - tier memory architecture allows programmers to schedule simultaneous data and code transfers. 
The CBE processor can support up to 128 simultaneous transfers between the SPE local stores and main 
storage. Although the SPE is optimized for SIMD type operations, the PPE has support for parallel 
vector/SIMD operations as well.  

  Hidden from the Operating System 
 The CBE is a good example of a multicore that must be directly addressed to get the maximum 
performance from it. The standard Linux system calls can see the dual threads of the PPE but are not 
fully aware of the SPEs. The developer must explicitly develop and compile code that works with the 
SPEs, and then that code must be linked with the code from the PPE. At that point Linux knows how to 
handle the eight SPE processors. The heterogeneous architecture of the CBE also provides exciting 
design choices for the developer who is willing to dig a little deeper into the possibilities.  
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  Synergistic Processor Unit 
 An SPE comprises a synergistic processor unit (SPU) designed to accelerate a wide range of 
workloads, providing an efficient data - parallel architecture, and the synergistic memory flow controller 
(MFC), providing coherent data transfers to and from system memory [Gschwind, Erb, Manning, and 
Nutter, 2007]. The SPU does not access main memory directly but rather must issue DMA commands to 
the MFC. The communication between the SPU and the PPU is through the interconnect bus (EIB). Since 
each SPE has its own memory management unit (MMU), this means that it can execute independently 
from the PPE. But that independence has limits. The SPUs are primarily optimized for data manipulation 
and calculation.   

  Intel Core 2 Duo Processor 
 Intel ’ s Core 2 Duo is only one of Intel ’ s series of multicore processors. Some have dual cores and others 
have quad cores. Some multicore processors are enhanced with hyperthreading, giving each core two 
logical processors. The first of Intel ’ s multicore processors was the Intel Pentium Extreme Edition 
introduced in 2005. It had dual cores and supported hyperthreading, giving the system eight logical 
cores. The Core Duo multicore processor was introduced in 2006 and offered not only multiple cores but 
also multiple cores with a lower power consumption. Core 2 Duo, also introduced in 2006, has dual 
cores; it has no hyperthreading but supports a 64 bit architecture. 

 Figure  2 - 8  shows a block diagram of Intel ’ s Core 2 Duo ’ s motherboard. The Core 2 Duo processor has 
two 64 - bit cores and 2 64K level 1 caches, one for each core. Level 2 cache is shared between cores. 
Level 2 cache can be up to 4MB. Either core can utilize up to 100 percent of the available L2 cache. This 
means that when the other core is underutilized and is, therefore, not requiring much L2 cache, the more 
active core can increase its usage of L2.   
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  Northbridge and Southbridge 
 Besides the CPUs, the next most important component of the motherboard is the chipset. The  chipset , 
shown in Figure  2 - 8 , is a group of integrated circuits designed to work together that connects the CPUs 
to the rest of the components on the motherboard. It is an integrated part of the motherboard and, 
therefore, cannot be removed or upgraded. It is manufactured to work with a specific class or series of 
CPUs in order to optimize its performance and the performance of the system in general. The chipset 
moves data back and forth from CPU to the various components of the motherboard, including memory, 
graphics card, and I/O devices, as diagrammed in Figure  2 - 8 . All communication to the CPU is routed 
through the chipset. 

 The chipset comprises two chips: Northbridge and Southbridge. These names were adopted because of the 
locations of the chips on the motherboard and the purposes they serve. The Northbridge is located in 
the northern region, north of many the components on the motherboard, and the Southbridge is located in the 
southern region, south of some components on the motherboard. Both serve as bridges or connections 
between devices; they bridge components to make sure that data goes where it is supposed to go.   

  The  Northbridge , also called the  memory controller hub , communicates directly with the CPU 
via the Front Side Bus. It connects the CPUs with high - speed devices such as main memory. It 
also connects the CPUs with Peripheral Component Interconnect Express (PCI - E) slots and the 
Southbridge via an internal bus. Data is routed through the Northbridge first before it reaches 
the Southbridge.  

  The  Southbridge , also called the  I/O controller , is a slower than the Northbridge. Because it is 
not directly connected to the CPUs, it is responsible for the slower capabilities of the 
motherboard like the I/O devices such as audio, disk interfaces, and so on. The Southbridge is 
connected to BIOS support via the Serial Peripheral Interface (SPI), six PCI - E slots, and other 
I/O devices not shown on the diagram. SPI enables the exchange of data (1 bit at a time) 
between the Southbridge and the BIOS support using a master - slave configuration. It also 
operates with a full duplex, meaning that data can be transferred in both directions.     

  Intel ’ s  PCI  Express 
 PCI - E or PCI Express is a computer expansion card interface. The slot serves as a serial connection for 
sound, video, and network cards on the motherboard. Serial connections can be slow, sending data 1 bit 
at a time. The PCI - E is a high - speed serial connection, which works more like a network than a bus. It 
uses a switch that controls many point - to - point full - duplex (simultaneous communication in both 
directions) serial connections called lanes. There can be 4, 8, of 16 lanes per slot. Each lane has two pairs 
of wires from the switch to the device  —  one pair sends data, and the other pair receives data. This 
determines the transfer rate of the data. These lanes fan out from the switch directly to the devices where 
the data is to go. The PCI - E is a replacement of the PCI and provides more bandwidth. Devices do not 
share bandwidth. The Accelerated Graphics Port (AGP) is replaced with a PCI - E x16 (16 lanes) slot that 
accommodates more data transferred per second (8 GB/s).  

  Core 2 Duo ’ s Instruction Set 
 The Core 2 Duo has increased performance of its processor by supporting Streaming SIMD Extensions 
(SSE) and special registers to perform vectorizable instructions. SSE3 provides a set of 13 instructions 
that are used to perform SIMD operations on packed integers and floating - point data elements. This 
speeds up applications that utilize SIMD operations such as highly intensive graphics, encryption, 
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and mathematical applications. The processor has 16 registers used to execute SIMD instructions: 8 
MMX and 8 XMM registers. The MMX registers support SIMD operations on 64 - bit packed byte, word, 
and doubleword integers. The XMM data registers and the MXCSR registers support execution of SIMD 
operations on 128 - bit packed single - precision and double - precision floating - point values and 128 - bit 
packed byte, word, doubleword, and quadword integers. Table  2 - 3  gives a brief description of the three 
registers, XMM, MMX, MXCSR, involved in executing SIMD operations.   

Table 2-3

Register Set Description

MMX Set of eight registers used to perform operations on 64-bit packed integer data types

XMM Set of eight registers used to perform operations on 128-bit packed single- and 
double-precision floating-point numbers

MXCSR Register used with XMM registers for state management instructions

 There are many compiler switches that can be used to activate various capabilities of the multicore 
processors. For the Intel C\C++ compiler, there are compiler switches that activate vectorization options 
to utilize the SIMD instructions, auto parallelization options, loop unrolling, and code generation 
optimized for a particular processor.     

 You might recall that Chapter  1 , Table  1 - 1  lists the categories of compiler switches that interface with 
the CPU and instruction set that affect how your program or application performs and utilizes core 
resources.     

  Summary 
 Although one of the primary jobs of the operating system is to encapsulate the details of the hardware 
and provide a hardware - independent interface, certain types of developers need to be aware of 
hardware specifics. These include library developers, compiler designers, system programmers, kernel 
programmers, server developers, game designers and developers, and others who have maximum 
system performance as a primary design goal. Four effective yet different designs for multicore 
architectures are the 

  Opteron  

  UltraSparc T1  

  Cell Broadband Engine  

  Core 2 Duo    

 As we have shown, each of these designs has unique features that you as a developer can leverage when 
you consider programming from a multicore perspective. The C/C++ compiler is the first - level interface 
to these designs. Homogeneous CMP designs have identical cores. Heterogeneous designs have cores 
with different instruction sets and architectures. The CBE is a good example of a heterogeneous CMP. 
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 This chapter has now introduced the four architectures that we shall reference throughout this book. All 
of the code examples have been compiled and tested in one or more of these architectures. Most of the 
examples have been compiled and tested in all these environments. The program profiles for the 
program listings contain specific compiler switches and linking options when required. Although each of 
these architectures is different, we demonstrate methods for dealing with them all in a standard fashion. 
We want you to be able to take advantage of hardware specifics in the most general way if it ’ s possible. 
For many software applications, the differences between hardware implementations are hidden because 
one of the primary design goals is to make the software compatible with as many different hardware 
platforms as possible. So there is an effort to avoid platform - specific features, as that is one of the 
primary jobs of the operating system. But with some applications you need to know the specifics of the 
hardware implementation so that you can optimize the code. Optimization for these applications 
becomes more important than compatibility. These applications include high - transaction database 
servers, web servers, application servers, hardware - intensive game engines, compilers, operating system 
kernels, device drivers, and high - performance scientific modeling and visualization software. 
Developers of these applications are practically forced to look for and exploit platform features that 
make their applications acceptable to the end user. So if you are this class of developer, familiarity with a 
specific processor or family of processors is a prerequisite for effective software development. 

 In Chapter  3  we turn to the challenges of multicore programming.              
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  Assume we ’ re facing multiple enemies and disperse the sets  . . .  Split up into four 
groups and activate the threshold triggers!   

   —  Shirow Masamune,  Ghost in the Shell     

 Until recently, the most accessible tools and techniques used for software development were 
centered on notions from the sequential model of computer program execution. The basic (and 
often unstated) assumption in Information Technology (IT) and Computer Science programs at 
universities, colleges, and technical schools was that the software developer would be working in 
the context of single processor computers. This is evidenced by the fact that until recently 
educational institutions placed very little emphasis on the ideas of parallel programming. Two of 
the primary reasons for the lack of focus on parallel programming were cost and tradition.   

   Cost : First, single processor computers were considerably cheaper and enjoyed a much 
wider availability than multiple - processor computers. Cost and availability made single 
processor computers the configuration of choice for most businesses, academic 
institutions, and government agencies.  

   Tradition : Second, the fundamental ideas behind software development and computer 
programming were worked out decades ago within the constraints of single processor 
environments. Basic algorithms for searching, sorting, counting, parsing, and retrieving 
were developed, refined, and perfected under a sequential programming model. These 
same basic algorithms, data structures, programming models, and software engineering 
methodologies form the basis of most software development approaches in use today.    
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 Sequential programming techniques are important and will always have their place. However, 
multiprocessor computer configurations are now widely available. This opens up a host of very different 
approaches to program decomposition and software organization. Software architectures that include a 
mix of sequential programming, multiprocessing, and multithreading will become common place. For 
the majority of developers these hybrid software architectures will be uncharted waters. The trend is that 
multiprocessor computers will in most cases replace single processor configurations in business, 
academia, and government. To take advantage of the multiprocessor environments, you as a software 
developer must add a new set of tools and techniques to your repertoire. Software projects that require 
multicore or parallel programming present unique challenges to software developers who are only 
accustomed to the sequential programming model, and this chapter addresses the challenges that 
developers face as they move into projects requiring multicore or parallel programming. We discuss the 
Software Development Life Cycle (SDLC) and methodologies as they apply to the concurrency model. 
Also, we discuss decomposing a problem as well as a solution, and procedural and declarative models.  

  What Is the Sequential Model? 
 In the basic  sequential  model of programming, a computer program ’ s instructions are executed one at a 
time. The program is viewed as a recipe, and each step is to be performed by the computer in the order 
and amount specified. The designer of the program breaks up the software into a collection of tasks. 
Each task is performed in a specified order, and each task stands in line and must wait its turn. In the 
sequential model computer programs are set up in almost story form. The programs have a clear 
beginning, middle, and end. The designer or developer envisions each program as a simple linear 
progression of tasks. Not only must the tasks march in single file, but the tasks are related in such a way 
that if the first task cannot complete its work for some reason, then the second task may never start. Each 
task is made to wait on the result of previous task ’ s work before it can execute. In the sequential 
model, tasks are often serially interdependent. This means that A needs something from B, and B needs 
something from C, and C needs something from D and so on. If B fails for some reason, then C and D 
will never execute. In a sequential world, the developer is accustomed to designing the software to 
perform step 1 first, then step 2, and then step 3. This  “ one  - at - time ”  model is so entrenched in the 
software design and development process that many programmers find it hard to see things any other 
way. The solution to every problem, the design of every algorithm, the layout of every data structure  — 
 all rely on the computer accessing each instruction or piece of data one at a time. 

 This all changes when the software requirements include multithreading or multiprocessing 
components. When parallel processing is called for, virtually every aspect of the software design and 
implementation is affected. The developer is faced with what we call the 10 challenges of concurrency: 

  1.   Software decomposition into instructions or sets of tasks that need to execute simultaneously  

  2.   Communication between two or more tasks that are executing in parallel  

  3.   Concurrently accessing or updating data by two or more instructions or tasks  

  4.   Identifying the relationships between concurrently executing pieces of tasks  

  5.   Controlling resource contention when there is a many - to - one ratio between tasks and resource  

  6.   Determining an optimum or acceptable number of units that need to execute in parallel  

  7.   Creating a test environment that simulates the parallel processing requirements and conditions  
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  8.   Recreating a software exception or error in order to remove a software defect  

  9.   Documenting and communicating a software design that contains multiprocessing and 
multithreading  

  10.   Implementing the operating system and compiler interface for components involved in 
multiprocessing and multithreading     

  What Is Concurrency? 
 Two events are said to be  concurrent  if they occur within the same time interval. Two or more tasks 
executing over the same time interval are said to  execute concurrently . For our purposes, concurrent 
doesn ’ t necessarily mean at the same exact instant. For example two tasks may execute concurrently 
within the same second but with each task executing within different fractions of the second. The first 
task may execute for the first tenth of the second and pause. The second task may execute for the next 
tenth of the second and pause. The first task may start again executing in the third tenth of a second and 
so on. Each task may alternate executing. However, the length of a second is so short that it appears that 
both tasks are executing simultaneously. 

 We may extend this notion to longer time intervals. Two programs performing some task within the 
same hour continuously make progress on the task during that hour. They may or may not be executing 
at the same exact instant. We say that the two programs are executing concurrently for that hour. Tasks 
that exist at the same time and perform in the same time period are concurrent. They may or may not 
perform at the same exact instant. Concurrent tasks can execute in a single -  or multiprocessing 
environment. In a single - processing environment, concurrent tasks exist at the same time and execute 
within the same time period by context switching. In a multiprocessor environment, if enough 
processors are free, concurrent tasks may execute at the same instant over the same time period. The 
determining factor for what makes an acceptable time period for concurrency is relative to the 
application. In this book, we will deal with the challenges of concurrency in terms of three categories: 

  Software development  

  Software deployment  

  Software maintenance    

 While there are many other ways to think about and group the issues related to multiprocessing and 
parallel programming, we chose these categories because in our experience most of the heavy lifting 
involved in multicore programming falls into at least one of these categories.     

 In this chapter, we primarily discuss software development. In Chapter  10 , we discuss maintenance and 
deployment.    

  Software Development 
 The software development effort comes in all shapes and sizes, from device driver development to the 
construction of large - scale  N  tier enterprise applications. Although the software development techniques 
involved vary with the size and scope of the application, there is a set of challenges that any application 
that uses multiprocessing, or multithreading, have in common. These challenges present themselves in 
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every phase of the SDLC. It is important for you to understand the connection between multicore 
programming and the SDLC well. This is because the easiest way to deal with the complexity, demands, 
and potential pitfalls of multicore programming is to tackle the issues during the appropriate stage in the 
SDLC. The SDLC describes the necessary activities that designers and developers perform in the process 
of producing high - quality software. Since the act of creating good software is part art, part engineering, 
and part science, there are competing theories for exactly what makes up the SDLC. Table  3 - 1  lists the 
major activities that are found in most versions of the SDLC.   

Table 3-1

Major SDLC Activities Description

Specifications Documents the agreement between the developer and the client by 
specifying what the software must do and the constraints of the 
software.

Design Specifies how the software will fulfill what has been stated in 
the specifications. The design determines the internal structure of the 
software. The design can be broken down into two approaches: 
architectural design (system broken down into modules) and detailed 
design (description of the modules).

Implementation The translation of the detailed design into code.

Testing and evaluation The process of exercising the software in order to judge its quality by 
determining how well the software has met the fulfillment of the 
specified requirement.

Maintenance The modification of a software product after delivery in order to correct 
faults, improve performance, improve attributes, or adapt the software 
to a changed environment.

 There are many ways to think about and organize the activities in Table  3 - 1 . Further, the activities listed 
in Table  3 - 1  are just the core activities that most versions of the SDLC have in common. Each approach to 
organizing the activities in the SDLC has spawned its own software development methodology. Once a 
software development methodology has been established, tool sets, languages, and software libraries are 
created to support that methodology. For example the object - oriented software revolution spawned the 
notions of: 

  Object - Oriented Software Engineering (OOSE)  

  Object - Oriented Analysis (OOA)  

  Object - Oriented Design (OOD)  

  Object - Oriented Programming (OOP)  

  Object - Oriented Database Management Systems (OODBMS), and so on    
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 These software development methodologies have dedicated languages such as Eiffel, Smalltalk, C++, 
Objective C, Java, Python, and CLOS. From these languages and methodologies have sprung libraries and 
tools, such as the Standard Template Library (STL), Unified Modeling Language (UML), Common Object 
Request Broker Architecture (CORBA), Rational Rose, Together, and Eclipse. These languages, libraries, 
and tools sets are very different from those used in logic programming or software development using 
structured programming techniques. Table  3 - 2  lists some commonly used software development 
methodologies.   

Table 3-2

Software Development 
Methodologies Description Activities/Phases

Agile Software is developed in short time 
intervals. Each interval or iteration is a 
miniature development project that 
delivers some part of the functionality of 
the software.

• Planning 
• Requirement analysis
• Design
• Coding
• Testing
• Documentation

Build and fix Software is developed and built and then 
reworked as many times as necessary until 
the client is satisfied with the product.

• Build first version
•  Modify until client is 

satisfied
• Maintenance phase
• Retirement

Extreme programming Model based on the incremental model; 
the developer informs the client how long 
it will take to implement and the cost of 
each feature, and the client selects which 
features are to be included in each 
successive build.

• Specifications
• Design
•  Implementation/

integration
• Delivery

Incremental The software is built in increments or 
steps; the software is designed, 
implemented, and integrated module by 
module. For each build the modules are 
assembled to fulfill a specified 
functionality.

• Requirements
• Specification
• Architectural design
• Build loop
• Maintenance
• Retirement

Object-oriented Software development based on the 
identification of the objects in the system; a 
bottom-up approach.

• Requirements
• OO analysis
• OO design
•  Implementation/

integration
• Operations mode
• Maintenance

Table continued on following page

c03.indd   39c03.indd   39 7/31/08   2:45:54 PM7/31/08   2:45:54 PM



Chapter 3: The Challenges of Multicore Programming

40

Software Development 
Methodologies Description Activities/Phases

Rapid prototyping With the model a prototype is created of 
the system. After that the SDLC continues 
based on the acceptance of the prototype. 
At each phase, there is interaction with the 
client to either test or verify the 
progression of the product.

• Rapid prototype
• Specification
• Design
• Implementation
• Integration
• Maintenance
• Retirement

Spiral The spiral model is similar to the 
incremental model with an emphasis on 
risk analysis and verification in each 
phase. Each pass through these phases 
occurs iteratively (called spirals).

• Planning
• Risk analysis
• Evaluation
• Engineering

Structured A top-down approach to software 
development in which the system is 
iteratively decomposed by functionality, 
starting from the highest levels of 
abstractions into its lowest functionality.

• Requirements
• Design
• Implementation
• Testing
• Deployment

Waterfall Most common and classic of the models. 
Also called the linear-sequential model. 
With this model, each phase must be 
completed in its entirety before moving to 
the next phase.

• Requirements
• Specifications
• Design
• Implementation
• Integration
• Maintenance
• Retirement

 Selecting a software development methodology is a challenge in itself, and once a methodology is 
selected, the possible tool sets and techniques come along by default. The choice of methodology has 
critical implications for how multiprocessing and multithreading are implemented in a piece of software. 
The developer who has multicore programming requirements needs to proceed with caution when 
selecting a particular approach because the tool sets and techniques of that methodology might restrict 
the developer to awkward and error prone implementations of multiprocessing or multithreading. 
Software approaches that are procedure driven handle multithreading and multiprocessing very 
differently from methodologies that are object or data driven. Object - Oriented Programming approaches 
present a very different set of options to the developer than what is available in logic programming. It is 
also the case that once the software development effort has begun and human resources and tools are in 
place, it is difficult to change paradigms in midstream or after the software has been deployed. In some 
software development efforts, tools sets, languages, and libraries are selected even before software 
requirements or specifications are understood. This is unfortunate because this often leads to a software 
implementation that is forced into the selected languages and tool sets whether it fits or not. Again, 
understanding the relationship between the various activities in the SDLC and multicore programming 
is important, and we emphasize this relationship throughout this book. 
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 Although there can be (and are!) disagreements about which is the best direction to take, there are basic 
activities that are common to all of the approaches. These activities are present in one form or another in 
every software development effort regardless of size. For example, every approach has some process for 
getting the requirements and specifications for a project. Every approach has activities centered on 
designing a solution prior to actually coding the finished product. Another example of a basic activity is 
the testing of software prior to its release. These type of common activities may occur in different places 
and amounts among the various software development methods, but they are present in each. If you 
deal with the 10 challenges of concurrency during the appropriate activities in the SDLC, the chances of 
producing correct and reliable programs are greatly increased. If the software you have to develop 
requires some kind of concurrency, then some portion of every activity in Table  3 - 1  is affected. We focus 
on the SDLC here because we advocate a software engineering approach to multicore application 
development as opposed to some trial and error, ad hoc plug - in methods that are being used to get 
 “ multicore - aware  ”   applications to market quickly. While there are ways to hide and abstract away some 
complexity of parallel programming and multithreading, there are no real shortcuts. The deployment of 
robust, correct, and scalable software applications that can take advantage of Chip Multiprocessors 
(CMPs) requires sound software engineering and an effective solid understanding of the SDLC. 

 Determining when, where, and how to incorporate multiprocessing and multithreading into the 
software development effort is the major theme of this book  —  which brings us to two of the primary 
questions that we will answer: 

  1.   How do you know when your software application needs multicore programming?  

  2.   How do you know where to put the multicore programming in your piece of software?    

 These questions are related to the first challenge in our list of 10 challenges presented earlier in this 
chapter. Both questions are central to the challenge of software decomposition. 

  Challenge #1: Software Decomposition 
 The need or opportunity for multithreading or multiprocessing is most often discovered during the 
decomposition activity. For our purposes,  decomposition  is the process of breaking down a problem or 
solution into its fundamental parts. Sometimes the parts are grouped into logical areas (that is, searching 
sorting, calculating, input, output, and so on). In other situations, the parts are grouped by logical 
resource (processor, database, communication, and so on). The decomposition of the software solution 
amounts to the Work Breakdown Structure (WBS) or its Architectural Artifacts (AAs).   

  The WBS determines which piece of software does what.  

  The AA determines what concepts or things a software solution is divided into.    

 The WBS typically reflects a procedural decomposition, whereas the AA represents an object - oriented 
decomposition. Unfortunately, there is no cookbook approach to identifying the WBS or the AA of a 
software solution.     

 We can say that model - driven decomposition is one of the most practical approaches, and we will have 
much to say about models throughout this book.   

 You cannot talk about where to use threads or whether to use simultaneously executing processes in the 
software solution until you have decomposed both the problem and the solution. Problem and solution 
decompositions are typically performed during the analysis and design activities in the SDLC. 
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A successful decomposition is one of the primary ingredients of a successful software development 
effort. On the other hand, a poor or inappropriate problem and solution breakdown almost certainly 
leads to failed software. 

  An Example of Decomposition 
 To show you what we mean by decomposition, we take as a simple example the problem of painting the 
house before the guests arrive for the holidays. Of course, we will take this opportunity to use the latest 
craze  —  software - automated painters. Take a look at how you might decompose the problem of painting 
the house, as well as the solution.   

Decomposition #1 
 The  problem  could be broken down into: 

  Deciding paint color and type  

  Acquiring paint and painters tools  

  Determining which rooms to paint first  

  Identifying which type of automated painter to use  

  Choosing which days of the week to paint  

  Figuring out when to start painting    

 This is one decomposition of the problem of painting the house. 

 A decomposition of the  solution  might look like this: 

  Select and purchase the paint that matches the furniture.  

  Use the neighbor ’ s software - automated painter.  

  Have the automated painter start at the front of the house and work to the back.  

  Only paint during the hours of 6:00 A.M. to 1:00 P.M. on weekdays.  

  Start the painting on the next available weekday.    

 You can quickly see part of the challenge of decomposition. The first thing you might notice is that there 
is typically more than one way to decompose the problem. As you look at the problem and solution 
breakdown, you may have had a very different set of steps in mind. In fact you could have chosen an 
entirely different approach to the problem of painting the house before the guests arrive for the holidays:

    Decomposition #2 
 Consider the following alternate  problem  decomposition: 

  Identifying rooms that would be better off with wallpaper  

  Finding walls where windows could be added to reduce wall surface area  

  Verifying if cleaning the walls could be a substitute for paint  

  Determining how much paint the neighbors have to donate  
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  Figuring out which walls can be removed instead of painted  

  Obtaining the travel plans of the guests  

  Acquiring demo software - automated painters for a free 30 - day trial    

 You might use the solution decomposition from the first approach, or you could choose an entirely 
different  solution  decomposition: 

  Strategically use lighting to showcase the best - looking walls.  

  Where lighting is not appropriate, the judicious use of mirrors is acceptable.  

  Add windows to external walls.  

  In the event that mirrors are inconvenient, use wallpaper.  

  Use as many demo painters as can be obtained.  

  Delay guests ’  arrival until software - automated painters are done.    

 The second observation you can make is that a decomposition might be incomplete or inappropriate! 
Ideally, the fundamental parts of a decomposition should collectively represent the initial problem or 
solution. It ’ s like putting the pieces of a puzzle back together again. If the pieces don ’ t collectively 
represent the whole, then the decomposition is incomplete. This means you haven ’ t captured the entire 
problem, and you won ’ t have the entire solution. In the painting the house problem, was identifying the 
amount or cost of the paint part of the original problem? You can ’ t tell from the statement of the 
problem. So you don ’ t know if Decomposition #1 or #2 is incomplete. On the other hand, clearly you 
need to paint the house before the guests arrive. The problem and solution in Decomposition #1 do not 
address the guests ’  arrival at all. So it is not clear whether the solution in Decomposition #1 will be 
acceptable. While Decomposition #2 does attempt to address the arrival of the guests, the problem and 
solution are geared toward finding ways not to paint the house at all or to paint as few walls as possible. 
This decomposition may be inappropriate. It might reflect a poor understanding of the intent of the 
initial problem. 

 You can also see that in the solution for Decomposition #1, a single software - automated painter is 
suggested, and in Decomposition #2 multiple software - automated painters were chosen. So not only 
does Decomposition #2 seek to minimize the number of walls to be painted, but it also attempts to do so 
as fast as possible. Appropriate decomposition is a primary challenge for applications based on the 
sequential model. It is even more of an issue where parallel processing is called for. There are software 
tools and libraries that can help the developer with implementing a decomposition; however, the process 
itself remains part of the problem solving and design activity. Until you get the problem and solution 
breakdown right, the application of multithreading or multiprocessing will be murky. 

 Earlier, we defined decomposition as the process of breaking down a problem or solution into its 
fundamental parts. But what are the fundamental parts of a problem or solution? The answer depends 
on what model you use to represent the problem and the solution. One of the challenges of software 
decomposition is that there are multiple ways to represent a problem and its solution. It could also be 
reasonably argued that  there is no one right way  to decompose a problem or a solution. So which 
decomposition should you choose? Another challenge is making sure that the decomposition is 
complete, appropriate, and correct. But how will you know if the breakdown is right? In some cases, it ’ s 
not a matter of choosing between multiple and possibly conflicting WBSs; it is a matter of coming up 
with any decomposition at all. This might be due to the complexity of the original problem. 
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The decomposition issue is front and center in any software development effort. It ’ s especially important 
where parallel processing tools or techniques will be deployed. But the WBS or AA chosen rely on the 
idea of models. Wherever decomposition takes place, there is always one or more models in the vicinity. 
Hiding beneath the surface of the choices in Decomposition #1 and #2 is an assumed and shared model.   

  Finding the Right Model 
 Models are the stuff decomposition is made of! Complicating the challenges of decomposition is the 
selection of a suitable model that appropriately represents problem, task, or solution.   

What Is a Model? 
 Software development is the process of translating concepts, ideas, patterns of work, rules, algorithms, 
or formulas into sets of instructions and data that can be executed or manipulated by a computer. It is a 
process that relies heavily on the use of  models.  For our purposes a  model  is a scaled artificial 
representation of some real process, thing, concept, or idea. The scaled representation is some smaller, 
simpler, or easier to deal with approximation of the process, thing, concept, or idea. 

 The primary function of the model is to imitate, describe, or duplicate the behavior and characteristics of 
some real - world entity. The model is to be a stand - in containing enough information to allow analysis 
and decision making. The better the model represents the real - world entities, the more natural the 
decomposition, WBS, or Architectual Artifacts will be. 

 One of the challenges to multicore programming is to select the appropriate model of the problem and 
solution. In terms of parallel programming, multiprocessing, and multithreading, you succeed when the 
appropriate model is used and fail when the wrong model is selected. The question of how to break up 
an application into concurrently executing parts can often be answered during an analysis of the solution 
model or the problem model. The selected model affects what decomposition choices are available. 

 For example, in the house - painting problem we assumed one familiar model of a house: 

   Model #1 : The house as something that has walls, rooms, and support for windows. You should 
add to this model ceilings, doors, archways, floors, banisters, a roof, and so on.    

 This is probably one of the models that immediately comes to mind when you are thinking about the 
house - painting problem. But as was the case with decomposition, there is more than one model for a 
given problem or solution. You could have selected a totally different model for the house: 

   Model #2 : The house as a dwelling measured in square feet, having an entry and an exit, having 
reasonable space for a family of two or more, providing protection from the weather, offering a 
modicum of privacy, and having a place to rest for all inhabitants.    

 While Model #2 might be good for certain scenarios (for example, igloo selection), Model #1 appears to 
be more helpful for the house - painting problem. 

 What this shows is that the notion of decomposition is closely related to models. In fact, the decomposition 
follows the parts, processes, and structure of the model used. Specifically, the decomposition is limited by 
the underlying model of the problem and solution. So part of the challenge of decomposition is the 
challenge of model selection.    
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Procedural Models or Declarative Models? 
 Earlier in the chapter we introduced the idea of a Work Breakdown Structure (WBS) and Architectural 
Artifacts (AAs) of a solution. The WBS breaks a problem or solution down into the tasks that need to be 
performed or the work that needs to be done. On the other hand, the AA divide a problem or solution into a 
set of persons, places, things, or ideas. Table  3 - 3  shows the differences between the WBS and AA approaches.   

Table 3-3

Attributes WBS AA

Definition Breaks a problem or solution down 
into the tasks that need to be 
performed or the work that needs 
to be done

Divides a problem or solution into a 
set of persons, places, things, or ideas

Model used Uses task-driven models Uses object-oriented or relational-
driven models

Decomposition model Uses procedural models Uses declarative models

Scalability/complexity Does not scale well; difficulty with 
very complex system

Can scale well; works best with 
complex system

 As you can see, whereas WBS decomposes the problem and solution into a set of actions, AAs break 
down problems and solutions into a set of things. Whereas the WBS uses task - driven models, AAs use 
object - oriented or relational - driven models. And most significant, whereas WBS decompositions follow 
from procedural models, AA follows from declarative models. 

 Perhaps the most important and critical decision that can be made for a software design that will include 
multiprocessing or parallel programming is whether to use procedural models or declarative models or 
some combination of the two. The fundamental differences in approach, technique, design, and 
implementation between procedural models and declarative models are so dramatic that they require 
radically different paradigms of computer programming [Saraswat, 1993]. In some cases, these paradigms 
are supported by very different languages. In other cases, the paradigms are supported by using familiar 
languages in extremely different ways. As the trend moves toward more processors on a single chip, 
toward single - chip massive multiprocessors (with 100s or 1000s) of processors on a chip, procedural 
models and their corresponding WBS will not be able to scale. They will collapse under the complexities 
of synchronization and communication. Declarative models and decompositions will have to be used. 

 The transition to declarative models is a major challenge because the procedural model and its WBS are 
based in the traditional sequential approach to programming discussed in the  “ What Is the Sequential 
Model? ”  section earlier in this chapter. The sequential model of computation currently has the most 
commonly used languages, tools, and techniques. Until very recently, the sequential model of 
computation was also the most frequently taught model in universities, colleges, trade schools, and so 
on. Although the declarative models have been with us for some time, they are not as widely used or 
taught (with the exception of OOP). Table  3 - 4  shows a list of declarative programming paradigms and 
some commonly used languages in that paradigm.   
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Table 3-4

Declarative Programming Paradigms Commonly Used Languages

Object-oriented C++
Java
Eiffel
SmallTalk
Python

Functional C++
Haskell
Lisp
ML
Scheme

Concurrent constraint C++
Prolog
Prolog-based languages

Constraint Prolog
Prolog-based languages

 One of the advantages that the C++ programmer has in the new world of CMPs is the fact that C++ 
supports multiparadigm development. That is, unlike languages like Java where everything must be an 
object, C++ supports object - oriented, parameterized, and imperative (procedural) programming. 
Because of C++ ’ s power of expressiveness and flexibility, it can be used to implement ideas from all of 
the programming paradigms listed in Table  3 - 4 . We will have much to say about declarative approaches 
to parallelism versus procedural approaches to parallelism throughout this book. As with most problems 
and solutions, the challenge is learning to use the right tool for the job.

    One Room at a Time or All at Once? 
 Earlier in the chapter for the problem of painting the house before the guests arrive for the holidays, you 
saw two problem and solution WBS. Decomposition #1 chose to use a single software - automated painter, 
and Decomposition #2 chose to use as many software - automated painters as possible. Note that the 
solution in Decomposition #1 specified that the software - automated painter start at the front of the house 
and work to the back. However, Decomposition #2 does not mention how the multiple software -
 automated painters should proceed. 

 Does it make sense to paint the house one room at a time? Or is it best to paint as many rooms 
simultaneously as possible? If you do attempt to paint more than one room at a time, will you need 
multiple paint brushes? Will each of the software - automated painters share a brush, or a bucket, or an 
elevation device? How many automated painters are enough  —  one for each room? One for each wall? 
Do the automated painters need to communicate with each other? What if some are done before others, 
should they proceed to help any painter that is not yet finished? What if some but not all rooms can be 
painted simultaneously? What if the rooms that can be painted simultaneously change from day to day? 
How is this communicated and coordinated with the software - automated painters? What if there is so 
much time between the recognition that the house needs painting and guests arriving for the holidays 
that a single automated painter can easily get the job done satisfactorily? Do you use multiple painters 
anyway? So, how do you perform a declarative decomposition for the house - painting problem? These 
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are the types of problems that you run into during problem and solution decomposition. And as you will 
soon see, the decomposition problems lead to other challenges.     

 It is one thing for a software solution or architecture to require multiprocessing or multithreading as a 
result of design decisions or user specifications. That ’ s different from the case where insightful analysis 
of an existing piece of software or software design reveals opportunities to exploit multiprocessing where 
it was otherwise not required or included. In this book, we focus our attention on software solutions or 
architectures that require multiprocessing as result of design decisions or user specifications.      

  Challenge #2: Task - to - Task Communication 
 If you have two tasks, A and B, that are concurrently executing and one of the tasks is dependent on the 
other for information, then the tasks need to have some way to communicate the information. If the tasks 
need to share some resource (that is, file, memory, object, a device, or so on) and that resource supports 
only one at a time access, then the tasks need to have some way to pass on information that the resource 
is available or that the resource is requested. If the tasks involved are separate operating system 
processes, the communication between the tasks is called  Interprocess Communication (IPC) . 

 Processes have separate address spaces. These separate address spaces serve to isolate processes from 
each other. This isolation is a useful protection mechanism, and this protection is sometimes a reason to 
choose multiprocessing over multithreading. The operating system keeps the resources of processes 
separate. This means that if you have two processes, A and B, then the data declared in process A is not 
visible to process B. Furthermore, the events that happen in process A are unknown by process B, and 
vice versa. If process A and B are working together to accomplish some task, information and events 
must be explicitly communicated between the two processes. The data and events for each process are 
local to process. In Chapter  5 , we discuss the anatomy of a process in more detail, but for now we use 
Figure  3 - 1  to show the basic layout of two processes and their resources.   

LOCAL VARIABLES LOCAL VARIABLES
GLOBAL VARIABLES

STACK SEGMENT FREE STORE DATA SEGMENT TEXT SEGMENT

STACK SEGMENT FREE STORE DATA SEGMENT TEXT SEGMENT

GLOBAL DATA STRUCTURES
GLOBAL VARIABLES
CONSTANTS
STATIC VARIABLES

IPC
MECHANISMS 

string Phrase("Hello");
void main() {
  ...
  write(fd[WRITE], Phrase,...);

string Msg;

void main() {
   ...
   read(fd[READ], Msg,...);
   string Word = new string(Msg);
} 

Phrase
"Hello"

Msg
"Hello"

Word
"Hello"

shared
memory filesmessages

PROCESS B’S ADDRESS SPACE

PROCESS A’S ADDRESS SPACE

pipe

LOCAL VARIABLES
GLOBAL VARIABLES

Process B’s
stack ...

Process A’s
stack ...

Figure 3-1
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 Note that in Figure  3 - 1  the resources of process A are isolated from the resources of process B. The 
processes have a text, data, and stack segment. Processes may also have other memory allocated from 
the free store. The data that a process owns is generally in the data segment, the stack segment, or the 
process ’ s own dynamically allocated memory. This data is protected from other processes by the 
operating system. In order for one process to have access to another process ’ s data, special IPC 
mechanisms must be used. Likewise, in order for one process to be made aware of what happens within 
the text segment of another process, a means of communication must be established between the 
processes. This also requires the assistance of operating - system - level IPCs. One of the primary 
challenges for the multiprocessing program is the management of IPC. The number of IPC mechanisms 
increases as the number of the number of processes involved in a single application increases. More 
processes almost always mean more IPC mechanisms and usage. In many instances, coordinating the 
communications among multiple processors is the real challenge. 

  Managing  IPC  Mechanisms 
 The POSIX specification supports six basic mechanisms used to accomplish communication between 
processes: 

  Files with lock and unlock facilities  

  Pipes (unnamed, named also called FIFOs  —  First - In, First - Out)  

  Shared memory  

  POSIX message queues  

  Sockets  

  Semaphores    

 Table  3 - 5  contains simple descriptions of the POSIX IPC mechanisms for processes.   
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Table 3-5

POSIX Interprocess Communication Description

Command-line arguments Can be passed to the child process during the invocation 
of the exec or spawn functions.

Environment variables/file descriptors Child processes can receive a copy of the parent’s 
environment data and file descriptors. The parent 
process can set the variables, and the child process can 
read those values. The parent process can open files and 
advance the location of the file pointers, and the child 
process can access the file using the same offset.

Files with locking facilities Used to transfer data between two processes. Locking 
facilities are used to synchronize access to the file 
between the processes.
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POSIX Interprocess Communication Description

Pipes A form of communication channel between related or 
unrelated processes. Normally accessed with file read 
and write facilities.

Shared memory A block of memory accessed by processes that resides 
outside of their address space.

Message queues A linked list of messages that can be shared between 
processes.

Semaphores A variable used to synchronize access between threads 
or processes of a resource.

Sockets A bidirectional communication link between processes 
that utilizes ports and IP addresses.

 Each of these IPC mechanisms has strengths, weaknesses, traps, and pitfalls that the software designer 
and developer must manage in order to facilitate reliable and efficient communication between two or 
more processes. We cover these in detail in Chapter  5 , but we want to mention here some of the primary 
challenges of using these IPC mechanisms: 

  They must be correctly created or the application will fail.  

  They require the proper user permissions for use.  

  They require the proper file permissions for use.  

  In some cases they have stringent naming conventions.  

  They are not object - friendly (that is, they use low - level character representations).  

  They must be properly released or they ’ ll cause lockups and resource leaks.  

  Source and destination processes are not easily identified in their use.  

  Initial deployments of the software can be tricky because all environments are not compliant.  

  Mechanisms are very sensitive to correct size of data sent and received.  

  Wrong data type or size can cause lockups and failures.  

  Flushing the mechanisms is not always straightforward.  

  Some of the mechanisms are not visible use user utilities.  

  Depending on type, the number of IPCs that a process can access may be limited.    

 These IPC mechanisms can be used as bridges between concurrently executing processes. Sometimes the 
bridge is a two - way bridge, sometimes it ’ s not. For instance, a POSIX message queue might be created 
with the permission allowing processes to read messages and to write messages. Some processes might 
open the queue up for reading, some for writing, and some for both. The software developer has to keep 
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track of which process opens up which queue for what. If a process opens up the queue for read-only 
access, then later tries to write the queue, it can cause problems. If the number of concurrently executing 
tasks involved is small, this can be readily managed. However, once you move beyond a dozen or so 
concurrently executing processes, then managing the IPC mechanisms become a challenge. This is 
especially true for the procedural models of decomposition mentioned earlier in the chapter. Even when 
the two - way or one - way traffic requirements are properly managed, you face issues of the integrity of 
the information transmitted between two or more processes. The message passing scheme might 
encounter issues such as interrupted transmissions (partial execution), garbled messages, lost messages, 
wrong messages, wrong recipients, wrong senders, messages that are too long, messages that are too 
short, late messages, early messages, and so on. 

 It is important to note that these particular communication challenges are unique to processes and don ’ t 
apply to threads. This is because each process has its own address space and the IPC mechanisms are 
used as a communication bridge between processes. Threads, on the other hand, share the same address 
space. Simultaneously executing threads share the same data, stack and text segments. Figure  3 - 2  shows 
a simple overview of the anatomy of a thread in comparison to that of a process.   
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Figure 3-2
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 Communication between two or more threads (sometimes called lightweight processes) is easier because 
threads don ’ t have to worry about address space boundaries. This means that each thread in the 
program can easily pass parameters, get return values from functions, and access global data. As you see 
in Figure  3 - 2 , threads of the same process access the global variables of its process stored in the data 
segment. Here we highlight the basic difference between Interprocess Communication (IPC) and 
Interthread Communication (ITC) mechanisms: IPC mechanisms reside outside the address space of 
processes, whereas ITC mechanisms reside within the address space of a process. That ’ s not to say that 
threads don ’ t have their own challenges; it ’ s just that they are immune from the problems of having to 
cross address spaces.  

  How Will the Painters Communicate? 
 Earlier in the chapter, in the example problem of painting the house before the guests arrive for the 
holidays, Decomposition #2 used as many software - automated painters as possible in its approach. But if 
the painters are in different rooms how will they communicate with each other? Do they need to 
communicate with each other? What if they are sharing a single bucket  —  how many painters can access 
it simultaneously? What happens when it needs to be refilled? Do the painters wait until the bucket is 
filled or do other work while the bucket is being refilled? What happens when multiple painters need 
the elevation device at the same time? Should you add more elevation devices? How many devices are 
enough? How does one painter let another painter knows that an elevation device is available? These 
kinds of questions plague multiprocessing and multithreading efforts. If they are not dealt with during 
the appropriate stages in the SDLC, then an application that requires multiprocessing or multithreading 
is in jeopardy before it is even installed. If the communication is not appropriately designed, then 
deadlock, indefinite postponement, and other data race conditions can easily occur. Data race, deadlock, 
and indefinite postponement are among the most notorious issues that multithreading or 
multiprocessing face, and they are the problems at the core of Challenge #3.   

  Challenge #3: Concurrent Access to Data or 
Resources by Multiple Tasks or Agents 

 Three common problems appear when concurrently executing instructions, tasks, or applications have 
been required to share data, devices, or other resources. These problems can result in the corruption of 
the data, the stalling of the task, or the freezing of the agent. The three problems are: 

  Data race  

  Deadlock  

  Indefinite postponement    

�

�

�
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  Problem #1: Data Race 
 If two or more tasks attempt to change a shared piece of data at the same time and the final value of the 
data depends simply on which tasks get there first, then a race condition has occurred. When two or 
more tasks are attempting to update the same data resource at the same time, the race condition is called 
a  data race . Information that is subject to race conditions is not reliable. This goes for input values as well 
as output values. The status of the paint bucket in the house - painting problem using Decomposition #2 
is a candidate for data race. 

 Consider the following description of the update process for the paint bucket: Each painter ’ s bucket 
routines include a get instruction for getting 1 or more gallons from the bucket. A read instruction for 
reading the status of the bucket and a write instruction for updating the status of the bucket after gallons 
have been removed. So a bucket process for a painter might look like this: 

Read  Bucket Status into Total
If N is  < = Total
   Get N Gallons of Paint 
   Total = Total - N
   Write Total to Bucket Status
end if  

 In this process, each painter once it removes paint from the bucket records how much paint is left based 
on the bucket ’ s previous paint status. Say that two of the painters, Painter A and Painter B, get to the 
bucket at the same time, and Painter A starts the bucket routines and removes 20 gallons of paint. Before 
Painter A can update the status of the bucket, Painter B removes 10 gallons of paint from the bucket and 
updates the status first. It ’ s possible since Painter B ’ s paint requirement was smaller than Painter A ’ s that 
Painter B finished first and, therefore, updated the  Bucket Status  first. Painter B has updated the 
status of the paint bucket with an incorrect amount. This is because, although Painter A removed 20 
gallons of paint first, the update status had not yet been stored. In addition to this, Painter B has already 
read the value in  Bucket Status  prior to Painter A ’ s update. Further, the monitor for the software -
 automated painters that is responsible for filling the bucket based on the  Bucket Status  happens to 
look at the status before Painter A has updated the status but after Painter B ’ s update. Any decisions that 
the monitor makes based on bucket status will be incorrect. Painter A is totally unaware of Painter B ’ s 
activity and updates the  Bucket Status  with a value of 10 gallons. At this point as a result of Painter 
A ’ s paint removal and Painter B ’ s paint removal, the bucket is actually empty, but the  Bucket Status  
variable reads  10 . Figure  3 - 3  shows the data race scenario for Painter A and Painter B.   
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 In a multithreading or multiprocessing environment, this is entirely possible because of the way that the 
operating system schedules threads and processes. It can all boil down to clock cycles. Since in this scenario 
the process of taking paint out of the bucket is separate from the process of updating the bucket status, the 
events can be separated by the operating system schedule. The painter that gets to the bucket status first 
turns out to be a matter of operating system scheduling, processor states, latency, and chance. This situation 
creates a race condition. Under these circumstances what will be the real status of the paint bucket? 

 Distinguishing shared modifiable resources from read - only resources is important. If multiple threads or 
processes are attempting to simultaneously access a resource that cannot be modified (that is, read - only 
memory or const objects), then data race is not a concern. Likewise, if multiple threads or processes are 
simply attempting to read a block of data simultaneously, data race does not occur. In order for a race 
condition to exist, the resource under consideration must be modifiable, and multiple threads or processes 
must be trying to simultaneously access the resource with at least one of the threads or processes 
attempting to modify the resource. 

 Whenever tasks concurrently share a modifiable resource, rules, and policies have to be applied to the 
task ’ s access. For instance, for the bucket routine you may have to deploy Exclusive Read Exclusive 
Write (EREW) policies so that when one painter starts other painters have to wait until the entire routine 
is completed. Or you might have to set up a painter whose only job is to update the bucket status. If 
more than one painter needs the bucket at the same time, then the requests must be held and organized 
according to some rule and then the painters must be granted access one at a time. But if you set up the 
bucket status so that only one painter at a time can access it, then aren ’ t you defeating the purpose of 
having multiple threads or processes? Will not the shared bucket status become a performance 
bottleneck? Identifying data race conditions can be tricky because the precise order in which the 
concurrently running processes or threads can execute is determined by what else the operating system 
is doing at the point. It depends on the other potentially unrelated processes or threads that are 
executing. Even computers with multiprocessors will be reduced to multiprogramming if the number of 
threads or processes that the operating system is managing is greater than the number of available 
processors. This means that the operating system will suspend and resume threads or processes as 
necessary. And, what to suspend and when to suspend it is typically up to the operating system. 
This introduces a degree of uncertainty when a collection of processes or threads are executing.     

 We will have more to say about this in Chapters  5 ,  6 , and  7 . Here, we just want to bring your attention 
to the fact that a data race is one of the potential pitfalls of multicore programming.    

  Problem #2: Deadlock 
 Deadlock is another waiting - type pitfall. To illustrate an example of deadlock, assume that the three 
painters (A, B, C) in the house - painting problem are working with two buckets (1, 2) of paint (different 
colors) instead of one. Painter A is responsible for updating the bucket statuses for both buckets of paint. 
Painter A, B, and C can perform their work concurrently. However, Painters B and C may only use one 
bucket of paint at a time. Painter A grants bucket status update access on a first come, first serve basis. 
Say that Painter B has exclusive access to Bucket 1, and Painter C has exclusive access to Bucket 2. 
However, Painter B needs access to Bucket 2 to complete its painting, and Painter C needs access to 
Bucket 1 to complete its processing. Painter B decides to hold on to Bucket 1 waiting for Painter C to 
release Bucket 2, and Painter C decides to hold on to Bucket 2 waiting for Painter B to release Bucket 1. 
Painter B and Painter C are engaged in a deadly standoff also known as a  deadlock . Figure  3 - 4  shows the 
deadlock situation between Painter B and Painter C.   
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 The form of deadlock shown in Figure  3 - 4  requires concurrently executing tasks that have access to some 
shared modifiable resource, which they must wait for each other to finish using before they can access. 
In Figure  3 - 4 , the shared resources are Bucket 1 and Bucket 2. Both Painters have access to these buckets. 
It happens that instead of one Painter getting access to both buckets at the same time, by the luck of the 
draw each Painter got access to one of the buckets. Since Painter B can ’ t release Bucket 1 until it gets 
Bucket 2, and Painter C can ’ t release Bucket 2 until it gets Bucket 1, the software - automated painting 
process is locked. Notice that Painter B and C can drive another task(s) into indefinite postponement 
(which is discussed in more detail in the next section). For example, Painter A, who is responsible for 
updating the bucket status, is also waiting for Painter B or Painter C to issue a write or read request. If 
other tasks are waiting for access to Bucket 1 or Bucket 2 and Painter B and Painter C are engaged in a 
deadlock, then those tasks are waiting for a condition that will never happen. 

 In your attempts to coordinate concurrently executing tasks, deadlock and indefinite postponement are 
two of the ugliest obstacles that you must overcome. To make matters worse, it ’ s not always clear when 
it has occurred. The tasks involved may be waiting for legitimate events to happen. It could also be the 
case that Task A is simply taking a little longer than expected. So identifying legitimate deadlocks also 
poses another challenge on the road to multicore programming. The steps involved in identifying 
deadlocks (deadlock detection), preventing deadlocks, and avoiding deadlocks are critical to 
applications that use multiprocessing or multithreading.     

 We discuss techniques for deadlock detection, prevention, and avoidance in Chapter  7 .    
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  Problem #3: Indefinite Postponement 
 Scheduling one or more tasks to wait until some event or condition occurs can be tricky. First, the event 
or condition must take place in a timely fashion. Second, it requires carefully placed communications 
between tasks. If one or more tasks are waiting for a piece of communication before they execute and 
that communication either never comes, comes too late, or is incomplete, then the tasks may never 
execute. Likewise, if the event or condition that you assumed would eventually happen actually never 
occurs, then the tasks that you have suspended will wait for ever. If one or more tasks are suspended, 
waiting for some condition or event that never occurs, this is known as indefinite postponement. In the 
software - automated painting solution, if Painter B does not release Bucket 1 until it has Bucket 2, Painter 
C does not release Bucket 2 until it has Bucket 1, Painter B and Painter C both do not request a  Bucket 
Status  update until they are finished, and Painter A waits for Painter B and C, then the work of all the 
involved painters is headed for  indefinite postponement . 

 Data race, deadlock, and indefinite postponement are examples of synchronization problems. These 
types of problems take the form of competition for the same resource by two or more tasks at the same 
time. Resources can be software or hardware. 

   Software resources  include files, records within files, fields within records, shared memory, 
program variables, pipes, sockets, and functions.  

   Hardware resources  include interrupts, physical ports, and peripherals such as printers, 
modems, displays, storage, and multimedia devices.    

 Some of these resources are easily sharable such as disks or files. Other resources require that access be 
carefully managed as in the case of interrupts. When two or more tasks attempt to change the state of the 
same resource at the same time, there is the possibility of data loss, incorrect program results, system 
failure, and in some cases, device damage.   

  Challenge #4: Identifying the Relationships between 
Concurrently Executing Tasks 

 The synchronization problems of data race, deadlock, and indefinite postponement are sometimes 
magnified by the challenges involved in setting up the right execution relationships between threads or 
processes. 

  The Basic Synchronization Relationships 
 There are four basic synchronization relationships between any two threads in a single process or any 
two processes in a single application. Table  3 - 6  lists the four basic synchronization relationships and their 
descriptions.   

�

�
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Table 3-6

Synchronization Relationship Description

Start-to-start (SS) One task cannot start until another task starts.

Finish-to-start (FS) One task cannot finish until another starts.

Start-to-finish (SF) One task cannot start until another task finishes.

Finish-to-finish (FF) One task cannot finish until another task finishes.

 So, if you have two tasks, A and B: 

  In a  start - to - start (SS)  relationship, Task A cannot start until Task B starts. Task B may start at the 
same time that Task A starts or after A starts, but never before Task A starts.  

  In a  finish - to - start (FS)  relationship Task B cannot start until Task A finishes or completes a 
certain operation. For example, if Task B is reading from the POSIX message queue that Task A 
is writing to, Task A needs to write at least one element in the queue before Task B can process it. 
Again if Task B needs to perform a binary search on a list that Task A has to sort, Task B should 
be synchronized with Task A so that Task B does not start the search until Task A has finished 
the sort. Finish - to - start relationships normally suggest information dependencies.  

  The  start - to - finish (SF)  synchronization relationship says that Task A cannot start until Task B 
finishes. This kind of relationship is common in situations where a parent process requires IPC 
from a child process to complete, or when a process or thread recursively calls itself after it has 
supplied the parent with the information or event needed.  

  Finally, you have the  finish - to - finish (FF)  synchronization relationship, which says that Task A 
cannot finish until Task B finishes. Whereas Task A may finish after Task B finishes, Task A is not 
allowed to finish before Task B.    

 Figure  3 - 5  shows the four synchronization relationships. The SS, FS, SF, and FF synchronization 
relationships are present in multithreaded or multiprocessing applications. Sometimes these 
relationships are very subtle, and discovering all of the variations of them during the various activities in 
SDLC can be perplexing. Some of the relationships between tasks are obvious, while others are only 
implied and require careful examination. There are timing considerations in addition to the 
synchronization relationships.    

�

�

�

�
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  Timing Considerations 
 If you have more than one of the software - automated painters in the room, should the ceiling painter 
start first? Should the wall painters wait until the ceiling painters are finished? Should both start at 
the same time? Or are you happy as long as they all finish at the same time? Perhaps the wall painters 
should wait 15 minutes before starting. It ’ s not just a matter having as many automated painters as 
possible; there has to be some kind of synchronization relationship among the painters. 

 Sometimes the synchronization relationships need to be augmented with timing - specific information. 
This means that in designing the synchronization relationship, time and events need to be considered. 
For example, if you have Task A and Task B executing concurrently, where Task A is performing a 
communication task and Task B is a monitor watching for a timeout, Task A and Task B might be 
synchronized with a start - to - start relationship. There is no need for Task B to begin checking for a 
timeout condition until Task A has started a communication task. However, once Task A starts its 
communication task and continues for so many milliseconds without any activity, Task B might issue a 
timeout message. In this case, Task B is using a  lag time  before it issues a timeout message. A lag time is 
used to define a synchronization relationship further. Lag times require that an element of time be added to 
the specification of a synchronization relationship. For instance, you might say that Task A and Task B have 
a start - to - start synchronization with the additional requirement that Task B has to wait 10 nanoseconds 
after Task A starts before starting. 
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 These types of timing considerations are another major reason to give close attention to multiprocessing 
or multithreading requirements during the appropriate activities in the SDLC. Also, the implementation 
of the synchronization relationships and timing considerations are dramatically impacted by whether a 
procedural model or declarative model of decomposition is chosen.   

  Challenge #5: Controlling Resource Contention 
Between Tasks 

 Resource contention occurs when multiple tasks compete for the use of the same resource. This topic is 
covered in Chapter  7 .  

  Challenge #6: How Many Processes or Threads 
Are Enough? 

 There is a point where the overhead in managing multiple processors outweighs the speed improvement 
and other advantages gained from parallelization. The old adage  “ you can never have enough 
processors ”  is simply not true. Communication between threads or synchronization between processors 
comes at a cost. The complexity of the synchronization or the amount of communication between 
processors can require so much computation that the performance of the tasks that are doing the work 
can be negatively impacted. In these cases, it ’ s more effective to write a program based on a sequential 
model. For example, if you want to sort a list of 100 numbers, you could attempt to divide up the list of 
100 into groups of 10, sort each group in parallel, and then merge the groups of 10 into one sorted list. But 
the time it would take to divide the list into groups of 10, then communicate that list to each group, and 
then merge the results into a single group all while trying to avoid a data race requires more effort 
and time than it would take to simple sort the numbers using a sequential method. On the other hand, 
if you have a few terabytes of numbers, the parallel approach could be more productive. 

 The question is how many processes, tasks, or threads should a program be divided into? Is there an 
optimal number of processors for any given parallel program? At what point does adding more 
processors or computers to the computation pool slow things down instead of speeding them up? It 
turns out that the numbers change depending on the program. Some scientific simulations may max out 
at several thousand processors, while for some business applications several hundred might be 
sufficient. For some client server configurations, eight processors are optimal and nine processors would 
cause the server to perform poorly. 

 The limit of software processes might be reached before you ’ ve reached the optimum number of 
processors or computers. Likewise, you might see diminishing returns in the hardware before you ’ ve 
reached the optimum number of concurrently executing tasks. 

 Ideally, something in the model decomposition of the problem or the model decomposition of the 
solution can help determine how many threads or processes are necessary. However, the actual 
implementation of the model can introduce so much complexity and overhead that a new model may 
have to be selected. Remember some of the challenges of IPC mechanisms between processes mentioned 
earlier in the chapter. These IPC mechanisms have to be synchronized. If the communication between 
two or more tasks is not properly synchronized, then data race conditions, deadlock, or indefinite 
postponement can be introduced into a piece of software. 
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 While we are strong advocates for the notion that the techniques, tools, languages, and software libraries 
should follow the decomposition model and not the other way around; the complexity of implementing 
the solution decomposition model has to be considered. You also can face many varieties of halting 
problems in applications that include multithreading and multiprocessing. As the number of cooperating 
tasks in an application increases, the complexity of the interdependencies increases as well. This can lead 
to very fickle and brittle software implementations. When multiple tasks are cooperating to provide the 
solution to some problem, what happens if one or more of the tasks fail. Should the program halt or 
should the work be redistributed somehow? This is a problem if you have only two concurrently 
executing tasks. The difficulty in resolving possible task failures rise exponentially as the number and 
interdependencies of threads or processes in a single application increase.  

  Challenges #7 and #8: Finding Reliable and Reproducible 
Debugging and Testing 

 When you test a sequential program, you can trace the logic of a program in a step - by - step manner. 
If you start with the same data and make sure that the system is in the same state, then the outcome 
or flow of the logic is predictable. You can find bugs in the software by starting the program in the 
necessary state, using the appropriate input, and then tracing through the logic step by step. Testing and 
debugging in the sequential model depends on the predictability of program ’ s initial state and current 
state, given the specified input. 

 This changes in multiprocessing and multithreaded environments. It is difficult to reproduce the exact 
context of parallel or concurrent tasks because of operating system scheduling policies, dynamic workloads 
on the computer, processor time slices, process and thread priorities, communication latency, execution 
latency, and the random chance involved in parallel contexts. Add to the workloads the issue of the tasks 
working with different data sets and the changing semantics of data as it is processed by the tasks. 
To reproduce the exact state of the environment during testing and debugging requires that every task the 
operating system was working on be recreated. The processor scheduling state must be known. The status 
of virtual memory and context switching must be reproduced exactly. Interrupt and signal conditions must 
be recreated. In some cases, even networking traffic would have to be recreated! Data must be set and reset 
to its original values and states. Even the testing and debugging tools impact the exact environment. This 
creates a debugging or testing atmosphere of nondeterminism. A situation is nondeterministic if for some 
initial state, the final state is not unambiguously determined [Gries, Scheider, 1993]. 

 In our experience, all but the most trivial multiprocessing and multithreaded applications have the look 
and feel of nondeterminism. This means that recreating the same sequence of events in order to test or 
debug a program is often out of the question. The reason that these things would have to be recreated is 
that they can all help to determine which process or thread can execute and on which processor they can 
execute. And it is the particular mix of executing processes and threads that could be the reason for a 
deadlock, indefinite postponement, data race, or other problem. Although some of these issues also 
affect sequential programming, they don ’ t disrupt the assumptions of the sequential model. The kind of 
predictability that is present in the sequential model is simply not available in concurrent programming. 
This forces the developer to acquire new tactics for testing and debugging programs. It also requires that 
the developer find new ways to prove program correctness. Again, the issues involved with testing and 
debugging are viewed through very different prisms when declarative models are chosen over 
procedural models. Program correctness can be a very elusive concept for programs that involve 
complex parallel - processing schemes. 
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 This nondeterminism also has consequences for cross - platform development. The operating system 
treatment of processes and threads in different operating system environments such as Linux, Solaris, 
Darwin, and so on can vary. Some systems have threads that are have high - , medium - , and low - priority 
options. Some systems have user - defined priority levels. Some systems have mission critical priorities, 
real - time priorities, normal priorities, background priorities, and so on. Operating systems can have 
different types of schedulers, different implementations of IPC mechanisms, and different 
implementations of kernel threads versus user threads. 

  Finding the Right Debugger and Profiler 
 Many debuggers and profilers that are commonly in use were developed under the assumption of single 
processor computers. Multicore application development requires debuggers and profilers that can see 
all of the physical and logical processors that are available. You need the debugger to be as intrusive as 
possible to the operating system workload. Debuggers need to have a clear window into kernel 
processes and system calls. The debugger needs to be able attach or detach a process or thread. It needs 
to be able to see all of the processor states or thread states that the operating system may put a process or 
thread in. A good debugger for multithreaded or multiprocessing applications should be able to start 
and stop threads and processes. It should be able to examine the thread stacks and free store.   

  Challenge #9: Communicating a Design That Has 
Multiprocessing Components 

 You also face the challenge of how to accurately capture a parallel design in documentation. You must be able 
to describe the WBS as well as the synchronization and communication between tasks, objects, processes, and 
threads. Designers must be able to effectively communicate to developers. Developers must be able to 
communicate with those who must maintain and administer the system. Ideally, this should be done using a 
standard notation and representation that is readily available to all concerned. However, finding a single 
documentation language that is broadly understood and can clearly represent the multiparadigm nature of 
some of these systems is elusive. We have chosen the Unified Modeling Language (UML) for this purpose. 
Table  3 - 7  lists the UML diagrams that are helpful for multithreaded and parallel programs.   

Table 3-7

UML Diagrams Descriptions

Structural/Architectural Diagrams

Component diagram A diagram that shows the dependencies and organization 
among a set of physical modules of code (packages) in a 
system.

Deployment diagram A diagram that shows the runtime configuration of processing 
nodes, hardware, and software components in a system.

Table continued on following page
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UML Diagrams Descriptions

Behavioral Diagrams

State/Concurrent State diagram A diagram that shows the sequence of an object’s 
transformation as it responds to events in the system. With a 
concurrent state diagram, these transformations can occur 
during the same time interval.

Sequence diagram An interaction diagram that shows the organization of the 
structure of objects that sends and receives messages.

Collaboration diagram An interaction diagram that shows the time ordering of 
messages.

Activity diagram A diagram that shows the flow from one activity to another; 
similar to a flowchart but can show the activities of several 
objects and the flow of several parallel activities.

 The diagrams in Table  3 - 7  are only a subset of the diagram types available in the UML. But these diagrams 
are immediately applicable to what you want to capture in currency designs. In particular, the UML ’ s 
Activity, Deployment, and State diagrams are very useful in communicating parallel - processing behavior.     

 Since the UML is the de facto standard for communicating object - oriented and agent - oriented designs, 
we rely upon its use in this book. Appendix  A  contains a description and explanation for the notation 
and symbols used in these diagrams.    

  Challenge #10: Implementing Multiprocessing 
and Multithreading in C++ 

 How can software developers that use C++ take advantage of the new CMPs? How can you implement 
multiprocessing in C++? The C++ language does not include any keyword primitives for parallelism. 
The C++ ISO standard is for all intents and purposes mute on the topic of multithreading. There is no 
way within the language to specify that two or more statements should be executed in parallel. Other 
languages use built - in parallelism as a selling feature. Bjarne Stroustrup, the inventor of the C++ 
language, had something else in mind. In Stroustrup ’ s opinion:   

 It is possible to design concurrency support libraries that approach built - in concurrency support 
both in convenience and efficiency. By relying on libraries, you can support a variety of 
concurrency models, though, and thus serve the users that need those different models better 
than can be done by a single built - in concurrency model. I expect this will be the direction taken 
by most people and that the portability problems that arise when several concurrency - support 
libraries are used within the community can be dealt with by a thin layer of interface classes. 
[Stroustrup, 1994]   
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 Further, Stroustrup says,  “ I recommend parallelism be represented by libraries within C++ rather than as 
a general language feature. ”  We have found Stroustrup ’ s position and recommendation on parallelism 
as a library the most practical option. This book is only made possible because of the availability of high -
 quality libraries that can be used for parallel and distributed programming. The libraries that we use to 
enhance C++ implement national and international standards for parallelism and distributed 
programming and are used by thousands of C++ programmers worldwide.   

  C++ Developers Have to Learn 
New Libraries 

 Although there are special versions of C++ that implement parallelism, we present methods on how 
parallelism can be implemented using the ISO (International Organization for Standardization) standard 
for C++. As we implied at the end of the previous section, the library approach to parallelism is the most 
flexible. System libraries and user - level libraries can be used to support parallelism in C++. System 
libraries are those libraries provided by the operating system environment. For example, the POSIX 
threads library is a set of system calls that can be used in conjunction with C++ to support parallelism. 
The Portable Operating System Interface (POSIX) threads are part of the new Single Unix Specification. The 
POSIX threads are included in the IEEE Std. 1003.1 - 2001. The Single Unix Specification is sponsored by 
the Open Group and developed by the Austin Common Standards Revision Group. According to the 
Open Group, the Single Unix Specification: 

  Is designed to give software developers a single set of APIs to be supported be every Unix 
System  

  Shifts the focus from incompatible Unix system product implementations to compliance to a 
single set of APIs  

  Is the codification and dejure standardization of the common core of Unix system practice  

  Has the basic objective of portability for both programmers and application source code    

 The Single Unix Specification Version 3 includes the IEEE Std. 1003.1 - 2001 and the Open Group Base 
Specifications Issue 6. The IEEE POSIX standards are now a formal part of the Single Unix Specification 
and vice versa. There is now a single international standard for a portable operating system interface. 
C++ developers benefit because this standard contains APIs for creating threads and processes. Excluding 
instruction - level parallelism, dividing a program up into either threads or processes is the only way to 
achieve parallelism with C++. The new standard provides the tools to do this. The developer can use: 

  POSIX threads (also referred to as pthreads)  

  POSIX  spawn  function  

  The  exec()  family of functions    

�

�

�

�

�

�

�

c03.indd   63c03.indd   63 7/31/08   2:46:03 PM7/31/08   2:46:03 PM



Chapter 3: The Challenges of Multicore Programming

64

 These are all supported by system API calls and system libraries. If an operation system complies with 
the Single UNIX Specification Version 3, then these APIs will be available to the C++ developer.     

 These APIs are discussed in Chapter  5 ,  6 , and  7 . They are used in many examples in this book. In addition, 
the relevant portions of the POSIX standard are included in Appendixes  C  and  D .    

  Processor Architecture Challenges 
 We looked at four effective multicore architectures in Chapter  2 . They were the Opteron, the Cell, the 
UltraSparc T1, and the Intel Core 2. While these processors each offer multicore capabilities, they have 
different architectures. These different architectures translate to difference sets of compiler switches, and 
directives. To get the most out of those different architectures, the developer has to be familiar with 
compiler -  and linker - specific features. In this book, we look at the compiler multicore support in the 
GNU C++ compiler, Intel C/C++ compiler, and the Sun C/C++ compiler. Each has its own set of 
switches and directives that supports multithreading and multiprocessing. In some cases (for example, 
the Cell processor), multiple types of compilers are needed to generate a single executable program. The 
danger is that taking advantage of a particular architecture can make the software nonportable. While 
portability is not an issue for all applications, it is for many. How can you take the most advantage of 
some multicore architecture without using features that will hurt portability? That is another key 
question you have to answer as you develop multicore applications.  

  Summary 
 Parallel and distributed programming present challenges in several areas. New approaches to software 
design and architectures must be adopted. Many of the fundamentals assumptions that are held in the 
sequential model of programming don ’ t apply in the realm of parallel. The developer is faced with a number 
of challenges of concurrency that we outlined in this chapter. Some of the keys points covered include: 

  Four primary coordination problems  —  data race, indefinite postponement, deadlock, and 
communication synchronization  —  are among the major obstacles to programs that require 
concurrency.  

  Every aspect of the Software Development Life Cycle (SDLC) is impacted when the 
requirements include parallelism or distribution  —  from the initial design down to the testing 
and documentation. Opportunities for parallelism and multiprocessing will be identified during 
various activities in the SDLC. It is important that the software developer understand the 
relationship between multicore programming and the SDLC.  

  Perhaps the most important and critical decision that can be made for a software design that will 
include multiprocessing or parallel programming is whether to use procedural models or 
declarative models. The fundamental differences in approach, technique, design, and 
implementation between procedural models and declarative models are so dramatic that they 
require radically different paradigms of computer programming.    

 In this book, we present architectural approaches to many of these problems. In addition to the 
architectural approach, we take advantage of the multiparadigm capabilities of C++ to provide 
techniques for managing the complexity of parallel and distributed programs. 
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 The trend is that multiprocessor computers will in most cases replace single processor configurations in 
business, academia, and government. As we have shown you in this chapter, to take advantage of the 
multiprocessor environments, you as a software developer must expand on the tools and techniques you 
already possess. Software projects that require multicore or parallel programming present unique 
challenges to those who are only accustomed to the sequential programming model. While hiding and 
abstracting away some of the complexity of parallel programming and multithreading, you have no real 
shortcuts around this idea. The deployment of robust, correct, and scalable software applications that 
can take advantage of CMPs requires sound software engineering and an effective a solid understanding 
of the SDLC. The chapters that follow will take on the challenges laid out in this chapter and show you 
what you, as the software developer, can do to overcome them.          
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                                                                                                        The Operating System ’ s Role           

   Functional Simplicity, Structural Complexity; The Best Life for All. That ’ s the maxim   . . .   

   —  Shirow Masamune,  Appleseed: The Promethean Challenge    

 So far we ’ ve described some of the primary challenges of multicore programming. We ’ ve briefly 
covered some of the notions of multithreading, multiprocessing, and multiprogramming. In 
Chapter  2 , we introduced the Multicore Opteron, Cell, Duo Core 2, and UltraSparc T1. These chips 
represent four effective but very different approaches to multicore architectures. We explained 
how hardware - specific compiler switches are sometimes necessary to get to certain specific 
features of a Chip Multiprocessor (CMP). But we ’ ve said very little about the operating system ’ s 
role in the design, development, and execution of multicore programs and applications. This 
chapter now turns to that topic. In this chapter we: 

  Provide an overview of the operating system  

  Discuss the developer ’ s interface to the multiprocessor  

  Explore how threads, processes, and processors are connected through the operating 
system  

  Examine how the operating system Application Program Interfaces (APIs) and system 
calls are used in conjunction with C++ for multicore programming and application 
development  

  Explain how the operating system functions as the gatekeeper of the multiprocessor  

  Discuss how to use the Portable Operating System Interface (POSIX) standard to design 
and implement multicore applications that work on all major hardware and operating 
system platforms     

�

�

�

�

�

�

c04.indd   67c04.indd   67 7/31/08   2:48:39 PM7/31/08   2:48:39 PM



Chapter 4: The Operating System’s Role

68

  What Part Does the Operating System Play? 
 Our focus on the operating system is the role it plays as a development tool. In this book, we discuss 
multicore programming from both the system programmer ’ s and the application programmer ’ s point of 
view. From these viewpoints, the operating system ’ s role can be divided into two primary functions: 

   Software interface : Providing a consistent and well - defined interface to the hardware resources 
of the computer  

   Resource management : Managing the hardware resources and other executing software 
applications, jobs, and programs    

  Providing a Consistent Interface 
 Prior to the advent of operating systems, programmers had to be familiar with the particular instruction 
sets and idiosyncrasies of each device. Video adapters, disk drives, printers, keyboards  —  all have 
specific and different instruction sets and command sets. Not only is the access to each device different; 
the same kinds of devices made by different manufacturers have different instructions sets and 
peculiarities. This led to programmers constantly having to rewrite the same functionality using different 
instruction sets. For example, if a developer had written a program that sorted a file to disk, that program 
could not be reused on another manufacturer ’ s disk until the device id, instruction set, device modes, 
and so on were all updated to reflect those from the new manufacturer ’ s device! In addition to unique 
instruction sets, each device connected to the computer had a specific address, port, or interrupt. Prior to 
the advent of operating systems, the programmer would have to know a device ’ s physical address, port, 
or interrupt before the device could be accessed. So, programs contained device ids, hardware addresses, 
port numbers, and interrupts. The programmer had to virtually write a device driver for each piece of 
hardware the program accessed. Program and software portability were out of the question! 

 The notion of the operating system changed all of this. Operating systems provided the programmer 
with common interfaces to similar devices. The operating system encapsulated internal structures for 
devices, like video adapters, sound cards, keyboards, monitors, disk drives, printers, and so on. Instead 
of forcing the programmer to use peculiar device specific instructions, the operating system provided the 
programmer with a couple of layers of software between the developer ’ s program and the hardware 
resources connected to the computer. These layers are called the  Application Program Interface (API)  and 
the  System Program Interface  ( SPI) . It became the operating system ’ s job to directly address hardware 
resources and all of their peculiarities. So, now the programmer only has to use the simplified API and 
SPI, and the operating system deals with all of the device - specific translation.  

  Managing Hardware Resources and 
Other Software Applications 

 In addition to providing an API and SPI to the developer, the operating system negotiates the access to 
processors, memory, I/O ports, interrupts, and storage on behalf of a program ’ s processes or threads. In 
most workstation environments and server environments, there are multiple programs being executed 
or waiting for execution at any one instant. Since the number of processors and amount of memory are 
limited, it ’ s the operating system ’ s job to decide which programs get access to which processor, for how 
long, and when. The operating system determines how much memory a process or collection of 
processes is allowed to hold and for how long. For programs that are too large to fit in main storage, the 
operating system manages the process of switching in pieces of the software for execution. The operating 
system assigns hardware resources to processes. The operating system then protects one processor ’ s 

�

�

c04.indd   68c04.indd   68 7/31/08   2:48:40 PM7/31/08   2:48:40 PM



Chapter 4: The Operating System’s Role

69

resources from access or violation by another process. In general, the operating system manages all of 
the hardware resources in a computer. In addition to managing hardware resources it also schedules and 
manages processes and threads  .

  The Developer ’ s Interaction with the Operating System 
 Regardless of whether you use class libraries, high - level function libraries, or application frameworks for 
your multicore development, the operating system still plays the role of gatekeeper to the processors, 
memory, filesystems, and so on connected to the computer. This means that the multithreading or 
multiprocessing functionality that is contained in class libraries, high - level function libraries, or 
application frameworks still needs to pass through operating system APIs or SPIs. Figure  4 - 1  shows the 
developer ’ s view of the software layers and the operating system.   

Developer’s application with multithreading or multiprocessing requirements

Application framework for parallel programming
(for example, STAPL)

Operating system, system calls, IPCs

Class libraries & object-oriented components for
multiprocessing and multithreaded libraries
(for example, TBB)

Thread function libraries
(for example, POSIX spawn and threads)

LE
VE

L 
2

LE
VE

L 
1

LE
VE

L 
3

LE
VE

L 
4

CORE 0 CORE 1 CORE 2 CORE 3 MAIN
MEMORY

 Figure 4 - 1   

 Figure  4 - 1  shows the software layers that can be used to provide multithreading or multiprocessing 
functionality to a software application. Notice the levels for each software layer in Figure  4 - 1 . In Figure 
 4 - 1 , the lower the level, the more details of the parallel programming mechanisms the developer has 
control over, has responsibility for using correctly, and has to have knowledge of. The lower the level, the 
more design and programming skill required to implement the software correctly. 
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   Level 4  is the highest level. This level provides the most insulation from the details of parallel 
programming for the developer. The Standard Template Adaptive Parallel Library (STAPL) is an 
example of this kind of application framework. STAPL is a framework for developing parallel 
programs in C++. The goal of a framework like STAPL is to allow the developer to provide 
parallelism in a software application while not having to worry about all of the specific 
implementation - related issues that are involved with parallel programming.     

 We take a closer look at STAPL in Chapter  8 .    

   Level 3  in Figure  4 - 1  is represented by template or class libraries like Intel Threading Building 
Blocks (TBB) library. The Intel Threading Building Block library is a set of high - level generic 
components that also encapsulate much of the detail of multiprocessing and multithreading. 
Developers using the TBB invoke high - level algorithm templates and synchronization objects 
that do the low - level work.     

 We also take a look at TBB in Chapter  8 .    

  Both STAPL and the TBB library allow the programmer to focus more on the software solution 
that is being implemented rather than on how the parallelism for the solution is implemented. 
Keep in mind that while this type of abstraction and information hiding is good for certain types 
of application developers, it may not be desirable for certain classes of system programmers, 
library developers, or server development. In Chapter  3  we stressed the fact that modeling and 
the Software Development Lifecycle (SDLC) are critical in determining where, when, or if 
multithreading or multiprocessing is needed. High - level application frameworks and thread 
building block libraries do not change this fact. They do not replace the job of modeling or any of 
the steps in the SDLC. However, if used correctly, they can make modeling and some of the steps 
in the SDLC easier to implement. We cannot stress enough the fact that parallel programming 
techniques and tools should come after problem and solution decomposition and modeling.  

   Level 2  in Figure  4 - 1  includes thread and process APIs provided by the operating system 
environment. In this book, we use POSIX APIs to interact with the OS for process management and 
thread management. Level 2 provides the application and system programmer with the most 
flexibility, but that flexibility comes at a cost. Working with multithreading and multiprocessing at 
level 2 requires detailed knowledge of process and thread management, Interprocess 
Communication, and a command of synchronization techniques. It requires intimate knowledge of 
operating system APIs related to process and thread management. It requires specific knowledge of 
the implementation of parallel algorithms. It requires knowledge of the specific compiler and linker 
directives that relate to multiprocessing and multithreading. In some cases, the control and flexibility 
of programming at level 2 is an acceptable tradeoff for the additional skill and effort required.  

  The programming at  level 1  in Figure  4 - 1  requires the most knowledge of operating system 
internals, hardware interfaces, and kernel - level interfaces. Level 1 programming directly 
accesses the hardware with few or no software barriers. Programming at level 1 is in the domain 
of system programming.    

 Regardless of whether your application has been developed with tools and techniques from level 4 or from 
level 3, the frameworks, templates, and class libraries ultimately have to call APIs that exist at level 2 and 
level 1. Levels 1 and 2 provide the SPI and API gateways to the operating system, and at the end of the day, 
it ’ s the operating system that controls access to the multiple cores that we are interested in exploiting. 

 While not every developer that is writing software to take advantage of multicore computers will or 
should work with level 1 and 2, a fundamental understanding of how things work at this level is very 
important during the SDLC. It ’ s important to understand the fundamentals because no single library, 
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framework, or tool provides all of the services that most applications need. Further, many of these tools 
have to be mixed and matched. Virtually all medium -  and large - scale software applications are built 
using a combination of libraries. These libraries are not always  thread safe  or  multicore - aware . When there 
is a problem, the software developer needs to understand at least the basics of what is going on with 
process and thread management. The high - level tools used in level 3 and 4 from Figure  4 - 1  have to be 
configured. Configuration requires a basic understanding of how things work. In some cases, the mixing 
and matching causes conflicts that need to be resolved. 

 In addition to this, not all high - level tools run in every environment. For instance, the TBB runs on many 
Intel - based processors but is not yet available on all other major non - Intel processors. To make it 
available for or completely compatible with your platform might require porting and so on. The nature 
of multithreaded and multiprocessing application requires that the developer understand the 
fundamental relationship between the software, the operating system, and the processors and memory. 
This is absolutely necessary to effectively deal with the debugging process, the testing process, and the 
final software deployment. High - quality, correct, reliable multiprocessing and multithreading 
applications require that the developer have a clear understanding of the operating system ’ s role.  

  Core Operating System Services 
 The operating system ’ s core services can be divided into: 

  Process management  

  Memory management  

  Filesystem management  

  I/O management  

  Interprocess Communication Manager    

 Table  4 - 1  shows a brief description of these core services.   
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Table 4-1

Operating System’s Core 
Services Description

Process management Manages the behavior and resources of a process. This includes 
process execution, resource allocation and protection, and 
synchronization.

Memory management Manages memory allocation for processes, which includes how 
memory is allocated to a process and what to do when memory is 
fully utilized.

Filesystem management Organizes collections of data on storage devices and provides an 
interface for accessing the data on those devices.

I/O management Manages the input and output requests from and to hardware devices.

Interprocess 
Communication Manager

Manages the communication between processes.
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 While these services are of concern to all application developers, they are far more visible for developers 
of multithreaded or multiprocessing applications. This is because functions like process scheduling or 
Interprocess Communication tend to be transparent to sequential processing applications. For example, 
in a sequential processing application, the operating system simply loads the developer ’  s program. The 
developer is usually not concerned with how the operating system breaks the application down into 
processes, how the processes are scheduled, or what priority the scheduled processes have. There is no 
worry about shared memory violations; as long as the operating system gives the application enough 
memory, everybody is happy. Since there are no concurrently executing substasks in a sequential 
processing application, Intertask Communication and synchronization are not issues. It is a very 
different picture for multiprocessing and multithreaded applications. In Chapter  3 , we discussed the 
challenges that the developer faces for these types of applications. Some of the challenges that relate 
specifically to the operating system services from Chapter  3  are: 

  Software decomposition into instructions or sets of tasks that need to execute simultaneously  

  Communication between two or more tasks that are executing in parallel  

  Concurrently accessing or updating data by two or more instructions or tasks  

  Identifying the relationships between concurrently executing pieces of tasks  

  Controlling resource contention when there is a many - to - one ratio between tasks and resource  

  Determining an optimum or acceptable number of units that need to execute in parallel  

  Documenting and communicating a software design that contains multiprocessing and 
multithreading  

  Creating a test environment that simulates the parallel processing requirements and conditions  

  Recreating a software exception or error in order to remove a software defect  

  Involving the operating system and compiler interface components of multithreading and 
multiprocessing    

 Once the software design process determines that the application is best divided into two or more 
concurrently executing tasks, the transparency of the operating system is immediately brought into question. 
This is because automatic task decomposition is not a feature of the operating system, but process and thread 
creation and management are responsibilities of the operating system. Ultimately, the concurrently executing 
tasks have to be mapped to either processes, threads, or both. Today ’ s operating systems and compilers are 
not capable of automatically doing this mapping. Someone has to be the liaison between the application ’ s 
requirements for concurrency and the operating system ’ s APIs and SPIs that support multiprocessing and 
multithreading. If you are working with tools and techniques taken from level 3 and 4 from Figure  4 - 1 , then 
the operating system ’ s role for the most part is transparent (but definitely present). If you are working at level 
1 or 2 as shown in Figure  4 - 1 , then specific knowledge of the operating system ’ s APIs and SPIs is required. 

 To get a closer view of the operating system ’ s role in deploying tasks that must execute concurrently, you 
can take a look at an application that has been decomposed into four simultaneously executing tasks. 
The C++ developer using any of today ’ s modern operating systems has three basic choices for 
implementing the tasks. The tasks can be implemented as: 

  Processes  

  Threads  

  A combination of processes and threads    
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 Figure  4 - 2  shows a block diagram of the basic decomposition choices for the example four - task 
application.   

MAIN
MEMORY

B

PROCESS A 

SINGLE KERNEL
THREAD

TASK 1

PROCESS A 

SINGLE KERNEL
THREAD

TASK 3 & 4 

PROCESS A 

SINGLE KERNEL
THREAD

TASK 2

TASK 4 TASK 1 TASK 2 TASK 3 TASK 4 TASK 1 TASK 2 TASK 3

IPC IPC

Operating system, system calls, IPCs

PROCESS A 

USER THREAD A

TASK 1

KERNEL
THREAD 1

KERNEL
THREAD 2

CASE 1:
Application with 4 concurrently executing tasks and decomposed
into 3 processes.

CASE 2:
Application with 4 concurrently executing tasks made into 1 
process decomposed into 3 user threads.

USER THREAD B

TASK 3 & 4
USER THREAD C

TASK 2

CORE 0 CORE 1 CORE 2 CORE 3

 Figure 4 - 2   

In   Case 1  in Figure  4 - 2  the application is divided into four tasks. These four tasks are implemented by 
three operating system processes. Figure  4 - 2  shows that the application will be deployed on a quad core 
computer. The fact that the four tasks are implemented by three processes means that it is possible for 
three of the tasks to be actually executing on three separate processors simultaneously or 
multiprogrammed on any number of processors. In multiprogramming, the operating system rapidly 
switches between processes, thus allowing multiple processes to accomplish work concurrently in a 
given time interval. Although only one process is actually using the processor at a time, the switching 
between processes is so fast that within, say, one second, two or more processes have been placed on the 
processor and performed work. Although we have a quad core computer in Figure  4 - 2 , we can actually 
execute only three tasks simultaneously. This is because the four user tasks have been mapped to three 
processes. The operating system can only schedule processes or kernel threads (lightweight processes) to 
execute on the processor. It cannot schedule logical tasks unless they have been mapped to processes or 
kernel threads. Even if all four cores were free, in  Case 1  only three cores would be used by the 
application simultaneously. Tasks 3 and 4 share a single process.  Case 1  is using multiprocessing because 
it takes advantage of the operating system ’ s multiprocessors by assigning its tasks to operating system 
processes. The system assigns processes to any free cores that it might have. So if the application is 
divided into processes, it can exploit the fact that the system can run as many processes in parallel as it 
has processors. 
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  How Do You Get from Tasks to Processes? 
 To map a user task to a system process, you use an operating system API. In this case you use the 
 posix_spawn()  function.  posix_spawn()  is used to create a new operating system process.  posix_
spawn()  is part of the operating system ’ s process management API. You pass the task that you want to 
associate with an operating system process to  posix_spawn() . Any task associated to a process through 
 posix_spawn()  can be scheduled by the operating system to run in parallel with other processes. 
Notice in  Case 1  that Task 1 needs one - way communication with Tasks 3 and 4, and Tasks 3 and 4 need 
two - way communication with Task 2. This brings up another question about interaction with the 
operating system. How can you pass information between concurrently executing processes? There are 
many ways to do this, but all of them require some kind of interaction with an operating system API. In 
this case, you can use a POSIX message queue. Table  4 - 2  contains brief descriptions for the POSIX 
message queue functions. These are examples of some of the POSIX API functions that allow 
concurrently executing processes to pass information.    

Table 4-2

POSIX Message 
Queue Functions Description

mq _open() Establishes the connection between a process and a message queue with a 
message queue descriptor

mq _close() Removes the association between the message queue descriptor and its 
message queue

mq _send() Adds the message pointed to the message queue specified

mq _receive() Receives the oldest of the highest priority message(s) from the message queue 
specified

mq _notify() Registers the calling process to be notified of a message arriving at an empty 
message queue that is associated with the specified message queue descriptor

mq _getattr() Obtains the status information and attributes of the message queue and the 
open message queue description associated with the message queue 
descriptor

mq _setattr() Sets the status information and attributes of the message queue

  Using the Thread Approach 
 The decomposition in  Case 1  in Figure  4 - 2  uses the process as the unit of decomposition.  Case 2  uses the 
thread as the unit of decomposition. Whereas the application spawns three processes in  Case 1 , the 
application has only one process in  Case 2 . However, that one process is divided into three user threads 
that can execute concurrently. In this scenario, the four concurrent tasks requirement has been 
implemented using three threads. Threads A, B, and C are each assigned tasks. This means that the four 
tasks have to be distributed among three threads. It is important to notice that  Case 2  has only two 
kernel threads. Since the operating system schedules processes or kernel threads for processors, this 
means that the single process in  Case 2  could be scheduled to a single processor or the two kernel 
threads could be scheduled to separate processors. Thus, if all four cores were free, at most two tasks 
would be executing simultaneously. 
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 In  Case 2  Threads A, B, and C are user threads. User threads can be bound to kernel threads in some 
cases and unbound in others (as we discuss later in the book). In  Case 2  the user threads have to be 
associated with kernel threads before they are actually executed. So, you can see that in our thread 
approach we map the software tasks to user threads, and then the user threads are mapped to kernel 
threads or lightweight processes (lwp).   

 We explain the differences between user threads and kernel threads in Chapter  6 .    

  How Do You Get from Tasks to Threads? 
 The  pthread_create()  operating system API is used to associate a software task with a thread. This 
function also falls under the process management duties of the operating system. We take a close look at 
POSIX thread API in Chapter  6 . Unless you are working with tools and techniques from level 3 or 4 (as shown 
Figure  4 - 1 ), associating software tasks with threads requires an understanding of how to use the POSIX thread 
API. Notice in Figure  4 - 2  that the communication requirements for the tasks do not require special operating 
system intervention when using the thread approach for decomposition. This is because the threads share the 
same address space and therefore can share data structures that are kept in the data segment of the process.   

  The Application Programmer ’ s Interface 
 It is important to note that, in both  Case 1  and  Case 2  in Figure  4 - 2 , the software tasks had to be mapped 
to entities that the operating system could manage and schedule. The programmer cannot simply assign a 
processor to each task that must be performed. This can be done only by the operating system. The 
programmer has to make the software tasks comprehensible to the operating system by using execution 
units that the operating system can understand. The operating system is the layer of software between the 
developer ’ s software and the multiple cores. The operating system provides a set of interfaces (APIs) that 
make hardware resources and OS services available to the application developer. To take advantage of 
any operating system services the developer must use an API. The problem is which OS API to use? Each 
operating system vendor provides its own unique API. While the functionality of these APIs is basically 
the same, they are not portable to different platforms. That is, software that has been developed using the 
Mac OS X (Darwin) API cannot be directly compiled and executed on Solaris, the Solaris API cannot be 
directly compiled and executed in a Windows environment, and so forth. So, programs that need to use 
the operating system API in order to gain full access to the multiple cores will not be portable if they use 
system - specific APIs. This means that applications would have to be rewritten in order to be used in a 
new environment. In most cases, this is not acceptable. That ’ s why in this book we use the POSIX API. 

  What Is  POSIX  and Why Use It? 
 Portable Operating System Interface (POSIX) is a standard that defines a standard operating system 
interface and environment, including a command interpreter (or  “ shell ” ) and common utility programs to 
support applications portability at the source code level. The standard is intended be used by both 
applications developers and system implementors. To make this book accessible to the broadest possible 
audience of system and application developers we choose to present OS API material using the POSIX 
standard. The major operating system environments  —  ZOS, Solaris, AIX, Windows, Mac OS X, Linux, HP -
 UX, IRIX  —  all claim basic support for the POSIX standard. While each of these environments has its own 
proprietary APIs, each also has support for the POSIX standard. Since the concepts, examples, and 
programs we discuss are based on the POSIX standard, you can try them out in virtually any environment. 
The POSIX standard plays the role of a cross - platform pseudocode that allows us to cover the main concepts 
of multicore programming in a language that can be implemented in all of the major environments. Further, 
POSIX implements a kind of  “ common denominator ”  OS interface. This means that, in most cases, it is 
straightforward to translate concepts, rationale, and functions calls to the proprietary OS APIs if necessary. 
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 Because the POSIX standard aims to provide portability at the source code level, we can build class 
libraries, template libraries, and application frameworks on top of POSIX components that can then be 
compiled and used in all of the major operating system environments. Obviously, this is not the case for 
platform - specific OS APIs. In particular, the developers working at level 3 and 4 as shown in Figure  4 - 1  
can benefit from this type of portability. Application frameworks for parallel processing, such as STAPL, 
and the template or class libraries such as TBB can be made portable by using the POSIX APIs for 
processes and threads for their low - level implementations. Further, mixing and matching high - level 
application frameworks and building block libraries in multiple environments is made practical if the 
POSIX APIs are used. Developers working at level 1 and 2 using POSIX APIs can write once and compile 
everywhere. Since large - scale computer configurations such as clusters, enterprise - class servers 
(mainframes), and even supercomputers have POSIX - compatible operating environments, the developer 
has the complete range of hardware support when scalability is a serious issue. While multicore 
processors are just now becoming commonplace for desktop computers, developer workstations, and 
small servers, they have been widely available for large - scale computer configurations for more than a 
decade. Therefore, when you invest in learning the POSIX API, it is applicable from small business 
application servers to the largest cluster - based configurations. 

 The POSIX standard allows us to talk about the intersection between multicore programming and core 
operating system services listed in Table  4 - 1  in a cross - platform fashion. All of the examples and programs 
in this book have been written and compiled in POSIX - compatible environments, and two of the 
appendices of this book contain POSIX reference material on process management and thread management.  

  Process Management 
 The process lifecycle is one of the important aspects of process management that we revisit throughout 
this book. For our purposes, the process lifecycle is summarized as: 

  Process creation  

  Process scheduling/execution  

  Process termination    

 The standard C++ library does not provide any services that deal with the major activities in the process 
lifecycle. So you need to look to the OS API when you need to do programming that requires processes. 
Even in a CMP there are not enough processors to run all processes simultaneously. The operating system 
has to multitask the processes. Multitasking allows more than one process to execute at the same time, 
whereas multithreading allows a single process to perform more than one task at the same time. When the 
operating system uses a scheduling policy to allow two or more processes to share a CPU concurrently, this 
is called  multitasking . Each process executes until some designated amount of time has expired or until some 
event has occurred. The interval of time a process is given to execute on a core is called a  quantum . Then the 
operating system switches to another process. This switching happens rapidly, giving the illusion that 
processes are being executed simultaneously, where in fact only one process is active at a time on a core. 
This switching between processes occurs until each process has completed. The scheduling policy in effect 
determines when a process should be switched. The scheduling policy also controls what happens when: 

  A process or thread is a running thread, and it becomes a blocked thread.  

  A process or thread is a running thread, and it becomes a preempted thread.  

  A process or thread is a blocked thread, and it becomes a runnable thread.  

  A running thread calls a function that can change the priority or scheduling policy of a process 
or thread.    

�

�

�

�

�

�

�
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 In this book, we assume that your environment supports the four basic scheduling policies supported by 
the POSIX standard: 

SCHED_FIFO
SCHED_RR
SCHED_SPORADIC
SCHED_OTHER  

 Table  4 - 3  contains a description for each of the basic scheduling policies that you can use.   

Table 4-3

POSIX Scheduling 
Policies Description

SCHED_FIFO When the quantum expires, the thread is placed at the head of the queue 
of its priority level.

SCHED_RR When the quantum expires, the thread is placed at the end of the queue of 
its priority level.

SCHED_SPORADIC Sporadic server scheduling policy.

SCHED_OTHER Implementation defined; the most effective scheduling policy for general 
use.

 Each process is controlled by an associated scheduling policy and priority. Associated with each policy is 
a priority range. Each policy definition specifies the minimum priority range for that policy. The priority 
ranges for each policy may overlap the priority ranges of other policies. 

 The operating system is also the transport for signals between processes. When Process A has to signal a 
termination to Process B, the operating system transports the signal. Each of the primary steps in the 
process lifecycle is in the domain of the operating system, and you have to use POSIX APIs to access 
these services. Keep in mind that software or programs stored on disk are not processes or threads. A 
process is a program that is in execution, that has a process control block and process table, and that is 
being scheduled by the operating system. Threads are parts of processes. Software and programs have to 
be loaded by the OS before any processes are created. Processes or lightweight processes have to be 
created before threads can be created.  

  Process Management Example: The Game Scenario 
 To illustrate how all this works, we are going to take a look at a classic game. I ’ m thinking of a six -
 character code. My code can contain any character more than once. However, my code can only contain 
any characters from the numbers 0 – 9 or characters a – z. Your job is to guess what code I have in mind. In 
the game the buzzer is set to go off after 5 minutes. If you guess what I ’ m thinking in 5 minutes, you 
win. You take out paper and pencil and with a little addition and a little subtraction you quickly realize 
that there are over 4,496,388 possibilities. So, in 2 of your 5 minutes you run through the entire SDLC and 
come up with the following strategy. First, as luck would have it, you just happen to have a file that 
contains the 4,496,388 possibilities. So, you simply write a C++ program that does something like the one 
in Example  4 - 1 .
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   Example 4  - 1   

Example 4-1
                
//...
                
  bool Found = false;
  ifstream Fin(Possibilities)
  while(!Fin.eof()  &  &  !Fin.fail()  &  &  !Found)
  {
      getline(Fin,Guess);
      if(Guess == MagicCode){
          Found = true;
      }
                
   }
                
//...   

 The problem is that you don ’ t know where in the file of 4,496,388 possibilities the six - character code I ’ m 
thinking of occurs. Depending on where my code is in the file, it might take longer than 5 minutes to find. 
Sorting the file does not help because you don ’ t know anything other than the length of my code and the 
possible characters that it can contain, so convenient techniques like the binary search can ’ t be used. 

 However, say that in your case you just happen to have access to a dual core CMP. So, the strategy then is 
to divide the big file containing over four million possibilities into two files containing two million 
possibilities. So you develop the program called  find_code . The  find_code  program takes as input a file 
containing codes, and it performs a brute - force (exhaustive/sequential) search looking for the code. The trick 
is that you need the OS to help you use both of the cores in the search. Ideally, you would have the two cores 
each searching through one of the files simultaneously. Your theory is that two heads are better than one, 
and if you divide the list in half, it should take half the time to find the code. So, you want the OS to run 
two versions of the  find_code  program simultaneously, with each version searching through half the 
original file. You use a  posix_spawn()  call to launch the program, as shown in Listing  4 - 1 .

   Listing 4  - 1   

//Listing 4-1  Program (guess_it) used to launch find_code.
                
 1  using namespace std;
 2  #include  < iostream > 
 3  #include  < string > 
 4  #include  < spawn.h > 
 5  #include  < sys/wait.h > 
 6
 7  int main(int argc,char *argv[],char *envp[])
 8  {
 9
10     pid_t ChildProcess;
11     pid_t ChildProcess2;
12     int RetCode1;
13     int RetCode2;
14     int Value;
15     RetCode1 = posix_spawn( & ChildProcess,�find_code�,NULL,
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16                            NULL,argv,envp);
17     RetCode2 = posix_spawn( & ChildProcess2,�find_code�,NULL,
18                            NULL,argv,envp);
19     wait( & Value);
20     wait( & Value);
21     return(0);
22  }   

 The  posix_spawn()  call on lines #15 and #17 launches the program named  find_code . For this to 
work, the program  find_code  has to be a binary executable program that the OS can locate on your 
computer. In this case  find_code  is a standalone program that implements the basic idea from Example 
 4 - 1 . When the program in Listing  4 - 1  is executed, it causes the operating system to generate three 
processes. Recall that it is the operating system not programs that assigns processes to execute on cores 
and CPUs. The processes can execute simultaneously. Two processes are associated with the  find_code  
program, and the third process is the process called  posix_spawn()  in the first place. The processes that 
are created as a result of calling  posix_spawn  are referred to as child processes.   

 We take a closer look at  posix_spawn()  in Chapter  5 .    

  Program Profile 4 - 1   
Program Name: 

  guess_it.cc  (Listing  4 - 1 )    

Description: 
  posix_spawn()  launches the program named  find_code .  find_code  is a standalone program that 
implements the basic idea from Example  4 - 1 . The program causes the operating system to generate three 
simultaneously executing processes. Two processes execute the  find_code  program, and the third 
process executes  posix_spawn() .

    Libraries Required: 
 None    

User - Defined Headers Required: 
 None    

Compile and Link Instructions:   
c++ -o guess_it  guess_it.cc

     Test Environment: 
 Linux Kernel 2.6 

 Solaris 10, gcc 3.4.3 and 3.4.6    

Processors: 
 Multicore Opteron, UltraSparc T1, Cell Processor    
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Notes: 
 None 

 It is important to note that the child processes that are spawned by  posix_spawn  are always binary 
executables that exist outside of the calling program. Unlike  pthread_create() , which calls a routine 
in the program,  posix_spawn()  uses code that exists outside of the calling program. 

 Each operating system environment has its own unique method of spawning child processes. The 
 posix_spawn()  method works in any operating environment that has the proper POSIX compliance. 
So, you can build cross - platform components that can be used for process creation. 

 The process that calls  posix_spawn()  is referred to as the parent process. So, the OS creates two 
child processes and a parent process. If the two cores are free, the operating system can assign two of the 
three processes to be executed simultaneously. Now you realize that, although you have divided the list 
in half and you have two simultaneous searches going on, you are not certain to find the code in the 
two million possibilities in time, so you need to divide the list in half once more. This gives four lists of 
one million codes, give or take a few that can be searched concurrently. Certainly, you can find the 
mystery code in a list of one million possibilities in 5 minutes. To generate four searches, you divide the 
 find_code  program into two threads of execution. So, the main program named  guess_it  in Listing  4 -
 1 , spawns two  child_processes  that execute the program  find_code . The program  find_code  
creates two threads called  Task1  and  Task2 . Listing  4 - 2  is the new multithreaded version of  find_code .

   Listing 4  - 2   

//Listing 4-2  A multithreaded version of the find_code program.
                
 1  #include  < pthread.h > 
 2  using namespace std;
 3  #include  < iostream > 
 4  #include  < fstream > 
 5  #include �posix_queue.h�
 6  string MagicCode(�yyzzz�);
 7  ofstream Fout1;
 8  ofstream Fout2;
 9  bool Found = false;
10  bool magicCode(string X)
11  {
12      //...
13
14     return(X == MagicCode);
15  }
16
17
18
19  void *task1(void *X)
20  {
21     posix_queue PosixQueue;
22     string FileName;
23     string Value;
24     if(PosixQueue.open()){
25        PosixQueue.receive(FileName);
26        ifstream Fin(FileName.c_str());
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27        string FileOut(FileName);
28        FileOut.append(�.out�);
29        Fout1.open(FileOut.c_str());  
30        while(!Fin.eof()  &  &  !Fin.fail()  &  &  !Found)
31        {
32           getline(Fin,Value);
33           if(!Fin.eof()  &  &  !Fin.fail()  &  &  !Found){
34              if(magicCode(Value)){
35                 Found = true;
36              }
37           }
38        }
39        Fin.close();
40        Fout1.close();
41     }
42     return(NULL);
43  }
44
45
46
47  void *task2(void *X)
48  {
49
50     posix_queue PosixQueue;
51     string FileName;
52     string Value;
53     if(PosixQueue.open()){
54        PosixQueue.receive(FileName);
55        ifstream Fin(FileName.c_str());
56        string FileOut(FileName);
57        FileOut.append(�.out�);  
58        Fout2.open(FileOut.c_str());
59        while(!Fin.eof()  &  &  !Fin.fail()   &  &  !Found)
60        {
61           getline(Fin,Value);
62           if(!Fin.eof()  &  &  !Fin.fail()   &  &  !Found){
63              if(magicCode(Value)){
64                 Found = true;
65              }
66           }
67        }
68        Fin.close();
69        Fout2.close();
70     }
71     return(NULL);
72  }
73
74
75
76
77
78  int main(int argc, char *argv[])
79  {
80

(continued)
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Listing 4  - 2 (continued)

81     pthread_t ThreadA, ThreadB;
82     pthread_create( & ThreadA,NULL,task1,NULL);
83     pthread_create( & ThreadB,NULL,task2,NULL);
84     pthread_join(ThreadA,NULL);
85     pthread_join(ThreadB,NULL);
86     return(0);
87
88  }   

 The  pthread_create()  functions on Lines 82 and 83 are used to create the threads for  task1  and  task2 . 
(We take a closer look at the POSIX pthread functionality in Chapter  6 .) The program in Listing  4 - 2  is for 
expositional purposes only. It does not contain any synchronization, exception handling, signal handling, 
or the like. We include it here so that you have a clear picture of the anatomy the  guess _ it  program that 
we introduced in Example  4 - 1 . Notice that  task1  Line 19, and  task2  Line 47 are normal C++ functions. 
They just happen to be used as the main routine for  ThreadA  and  ThreadB . Also notice on Lines 24 and 
53 that each thread accesses a  PosixQueue . This is a user - defined object, and it contains the name of a 
different file that each thread will search. 

 So, the program in Listing  4 - 1  spawns two child processes. Each process executes  find_code , which in 
turn creates two threads. This gives a total of four threads. Each thread reads a filename from the 
 PosixQueue  object. So, rather than having a one big file of 4,496,388 possibilities, you now have four 
smaller files containing a little more than one million possibilities. Now you use a simple brute - force 
search by each thread. One of the threads will find the  MagicCode  I was thinking about. Because of the 
 Found  variable declared on Line 9 in Listing  4 - 2 , the file scope or global scope for  ThreadA  and  ThreadB  
can be used as a control variable that causes both threads to stop. But what about the other two threads 
in the second process? You used the  PosixQueue  to communicate the filenames to both processes and all 
four threads. Is there a way that you can use a queue to let the three processes and four threads know 
that it is time to stop once one of the threads finds the  MagicCode ?   

  Program Profile 4 - 2   
Program Name: 

  find_code.cc  (Listing  4 - 2 )    

Description: 
 The program  find_code  creates two threads called  Task1  and  Task2 . Each thread accesses a 
 PosixQueue . This is a user - defined object, and it contains the name of a different file that each thread 
will search for the code.

    Libraries Required:   
pthread
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     User - Defined Headers Required:   
posix_queue.h

     Compile and Link Instructions:   
c++ -o find_code  find_code.cc posix_queue.cc -lpthread -lrt

     Test Environment: 
 Linux Kernel 2.6 

 Solaris 10, gcc 3.4.3 and 3.4.6

    Processors: 
 Multicore Opteron, UltraSparc T1, Cell Processor    

Notes: 
 None     

  Decomposition and the Operating 
System ’ s Role 

 Decomposition is a theme that we revisit many times in this book for two reasons: 

  The fundamental activity of software design is breaking down the problem and the solution in a 
way that allows the solution (and sometimes the problem) to be implemented in software.  

  Parallel programming, multithreading, and multiprocessing all require that software be broken 
down into execution units that can be scheduled by the operating system for concurrent 
processing.    

 This makes decomposition front and center for multicore programming. Notice that, in the classic game 
example used in the preceding section, there is no mention of parallel programming, multithreading, 
operating systems, or so on. There is just a simple statement of a problem. Guess what six - character code 
I ’ m thinking of in 5 minutes or less. We started with a simple plain English description of a problem, and 
somehow we ended up with a multiprocessing, multithreaded program that required Interprocess 
Communication and operating system intervention and assistance. One of the primary links between the 
simple plain English description and the simultaneously executing operating system threads is the 
process of decomposition. Consider the example from the point of view a logical breakdown and a 
physical breakdown. Figure  4 - 3  contains a functional (logical) breakdown of the operating system 
components from the  guess_it  program taken from Listing  4 - 1  and Listing  4 - 2 .   

�

�
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 As you can see in Figure  4 - 3 , we had six units of execution that the operating system was responsible for, 
two processes and four threads. Recall from Example  4 - 1  that we started out initially with a single 
program that searched a file. We used the OS API to spawn two instances of the program so that we 
could search two files simultaneously. Notice in Figure  4 - 3  that the  find_code  is then divided into two 
threads. So, the actual work components are easily visible in Figure  4 - 3 . Missing from Figure  4 - 3  is the 
decomposition of the single data file containing the over four million possibilities into four smaller files 
containing one million+ possibilities. Each of the threads in Figure  4 - 3  worked on its own unique file. So, 
we had a data decomposition in addition to our work decomposition. The decomposition of our  guess_
it  program is an example of the Single Instruction Multiple Data (SIMD) concurrency model. Recall that 
in this concurrency model multiple tasks execute the same sequence of instructions over different 
datasets. We had four threads each executing the same code (single instruction) on four different sets of 
data. Even if we had the benefit of the tools like STAPL or TBB, we would ultimately need to interface 
with the operating system to actually implement this SIMD model. This type of decomposition and OS 
interface is the kind of programming shown at level 1 and 2 in Figure  4 - 1 . Although developers working 
at level 3 and 4 (as shown in Figure  4 - 1 ) are generally free from this level of interaction, the operating 
system ’ s role should be clear. 

B

CHILD PROCESS 2   find_codeCHILD PROCESS 1   find_code

T1 T2 T3 T4

MULTICORE (CMP)

SCHEDULER

POSIX API OPERATING SYSTEM INTERFACE

guess_it program
with search function

Guess my 6-character code
in 5 minutes. The only hint you
have is it can contain the characters
a–z, 0–9.

THREAD A

task1
SEARCH

THREAD B

task2
SEARCH

THREAD A

task1
SEARCH

THREAD B

task2
SEARCH

CORE 0 CORE 1 CORE 2 CORE 3

Figure 4-3
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 In addition to a breakdown of the logical units that involve the OS, you also have physical units. Figure 
 4 - 4  shows a UML deployment diagram for the programs in Listing  4 - 1  and  4 - 2 .   

guess_it.cc find_code.cc

message_queue

Figure 4-4

 This diagram shows the physical pieces of the simple  guess_it  program. We have two primary 
executables: 

   guess_it  (Listing  4 - 1 )  

   find_code  (Listing  4 - 2 )    

 There are four files that contain the possible choices and several source files containing our simple brute -
 force solution to our guess my code game and a message queue. The path to all binary files must be 
known to the operating system at runtime. If the  posix_spawn()  calls on Lines 15 and 16 in Listing  4 - 1  
can ’ t locate the  find_code  programs, the  guess_it  program in Listing  4 - 2  will not work. The operating 
system ’ s role of finding and loading code to be executed is one of the roles that is often overlooked and 
resurfaces in the form of  “ gotchas ”  when deploying multiprocessing and parallel processing 
applications. You can use deployment diagrams to help keep an audit trail of the physical decomposition 
of applications. Considering the decompositions in Figure  4 - 3  and Figure  4 - 4  along with the original 
statement of the problem and the first try at its solution, you can begin to see how the SDLC plays a 
major role in multicore application design and implementation. From the initial problem statement of 
 “ Guess what six - character code I ’ m thinking of in 5 minutes, ”  we devised a solution that involved 
searching a list of possibilities. But since the list was sufficiently large and we were under a time 
constraint, we came up with a strategy that required dividing the list of possibilities up into smaller lists 
with the notion of searching the smaller lists simultaneously for the  MagicCode . 

 This strategy is an example of the design activity that is part of the SDLC. The original statement of the 
problem is an example of requirements definitions that is part of SDLC. The implementation of the 
strategy using  posix_spawn() ,  pthread_create() , and  PosixQueue  is part of the coding activity 
from the SDLC. While the operating system is not necessarily a consideration during the requirements or 
design activities of the SDLC, it is present for the coding, deployment, and maintenance activities of the 
SDLC. Our goal here is to make its function clear in terms of where it fits for applications that need to 
exploit multicore CMPs. In Chapters  5  and  6 , we take a much closer look at processes and threads as 
units of execution that can be scheduled to execute simultaneously by the operating system.  

�

�
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  Hiding the Operating System ’ s Role 
 The real goal is to understand the part the operating system plays in executing multithreaded and 
multiprocessing programs without having your software designs bogged down with the details of thread 
and process implementation. One of the primary reasons that you ultimately want to get away from the 
details of thread and process implementation is because the trend is that CMPs are moving toward more 
cores on a single chip with the ultimate goal of massive parallelism (100s or 1000s ) of cores on a single 
chip. It will be important to know the operating system ’ s role, but you will not want to expose it in your 
designs. This was the case with the solution in Listings  4 - 1  and  4 - 2 . As the trend moves toward more 
cores and more parallelism, you need to pursue two important objectives for software development: 

  1.   Taking advantage of the operating system while making it transparent to software designs  

  2.   Moving from procedural paradigms of parallel programming to declarative paradigms    

  Taking Advantage of C++ Power of 
Abstraction and Encapsulation 

 Fortunately C++ ’ s support for Object Orientation, genericity, predicates, and multiparadigm 
programming give a bridge to and a way to see the future of software design and development. Object -
 Oriented Programming (OOP) is part of the declarative paradigms of software development [Meyer, 
1988] and [Stroustrup, 1997]. As you will see in the next section, the notions of encapsulation supported 
by C++ aid in making the operating system level transparent to software designs. Templates can be used 
to implement genericity techniques found in higher - order declarative approaches to parallel 
programming, and ideas of classes, predicates, and assertions in C++ can be used to move toward 
declarative programming techniques that support massive and complex parallel programming 
techniques. Class and template libraries such as STAPL and the TBB are the initial components that 
support the move to massive parallelism on CMPs. The idea is to build classes that encapsulate lower -
 level procedural - driven functionality of the operating system APIs while providing higher - level 
declarative interfaces. C++ interface classes are ideal for providing wrappers for low - level OS APIs, 
synchronization mechanisms, and communication components [Stroustrup, 1997]. Also, you want to use 
C++ templates to capture patterns of parallelization, implementing the details while the user accesses a 
higher, more functional interface. You then want to build from the C++ components application 
frameworks that capture architectures that support parallelism. Using higher - level components, 
frameworks, and architectures, you can then directly implement the models that produced in the design 
and specification activities of the SDLC.  

  Interface Classes for the  POSIX API s 
 The easiest approach to making the POSIX APIs transparent is to provide C++  interface classes . Interface 
classes are classes that provide a wrapper for functions, data, or other classes. The interface class acts as a 
kind of costume that allows something to appear differently than it does normally. An interface class 
puts a different face on a function, piece of data, or another class. Interface classes are also called adaptor 
classes. The new interface provided by an interface class is designed to make the class easier to use, more 
functional, safer, or semantically correct. Take, for example, the POSIX thread functions shown in Lines 
81 – 85 in Listing  4 - 2 . We want the main line of this program to not expose operating system calls and 
want to add a more C++ Object - Oriented flavor to the  guess_it  program. Listing  4 - 3  contains a new 
format for the  find_code  program from Listing  4 - 2 .
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   Listing 4  - 3   

//Listing 4-3   A more object-oriented find_code:  ofind_code.
                
 1  #include �thread_object.h�
 2
 3
 4  int main(int argc, char *argv[])
 5  {
 6
 7
 8
 9     user_thread Thread[2];
10     Thread[0].name(�ThreadA�);
11     Thread[1].name(�ThreadB�);
12     for(int N = 0; N  <  2;N++)
13     {
14        Thread[N].run();
15        Thread[N].join();
16     }
17     return(0);
18
19  }   

 The code in Listing  4 - 3  replaces Lines 78 – 88 in Listing  4 - 2 . While we haven ’ t really saved any lines of 
code, we have changed the interface of the thread creation and execution process. We now have a  user_
thread  class that encapsulates the  pthread_t  thread id and some other pthread functions. Now we ’ re 
declaring objects and invoking methods as opposed to calling POSIX API functions. The program in 
Listing  4 - 3  creates and executes two threads. It then joins with the threads prior to exiting. While we can 
see a little easier what the thread was supposed to do in Listing  4 - 2 , it is not apparent in Listing  4 - 3  what 
the thread is executing. In Listing  4 - 2  Lines 82 and 83 call  pthread_create  and pass it the names of the 
functions  task1  and  task2  that will be executed by  ThreadA  and  ThreadB . In Listing  4 - 3 , because of 
encapsulation, its not apparent that  ThreadA  and  ThreadB  will execute. We can see only that the  run()  
method has been invoked. To get a better picture of how Listing  4 - 3  replaces Listing  4 - 2 , take a look at 
the declarations in  thread_object.h  from Line 1 of Listing  4 - 3 .  thread_object.h  contains an abstract 
class named  thread_object . We know this class is abstract because of the abstract virtual method 
declared on Line 14 in Listing  4 - 4 . 

  Program Profile 4 - 3   
Program Name: 

  ofind_code.cc  (Listing  4 - 3 )    

Description: 
 The program in Listing  4 - 3  creates and executes two threads. It then joins with the threads prior to 
exiting. The  run()  method invokes the tasks to execute. Listing  4 - 3  replaces Listing  4 - 2 ; look at the 
declarations in  thread_object.h .    

Libraries Required: 
  rt ,  pthread     
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Additional Source Files Needed: 
  thread_object2.cc  (Listing  4 - 5 ),  user_thread.cc  (Listing 4 - 6)    

User - Defined Headers Required: 
  thread_object.h  (Listing  4 - 4 ),  posix_queue.h

     Compile and Link Instructions:   
c++ -o ofind_code ofind_code.cc user_thread.cc thread_object.cc posix_queue.cc 
-lrt -lpthread

     Test Environment: 
 Linux Kernel 2.6 

 Solaris 10, gcc 3.4.3 and 3.4.6

    Processors: 
 Multicore Opteron, UltraSparc T1, Cell Processor    

Notes: 
 None

   Listing 4  - 4   

//Listing 4-4  A declaration of a simple thread_object.
                
                
 1  #ifndef __THREAD_OBJECT_H
 2  #define __THREAD_OBJECT_H
 3
 4  using namespace std;
 5  #include  < iostream > 
 6  #include  < pthread.h > 
 7  #include  < string > 
 8  #include �posix_queue.h�
 9
10  class thread_object{
11     pthread_t Tid;
12     string Name;
13  protected:
14     virtual void do_something(void) = 0;
15  public:
16     thread_object(void);
17     ~thread_object(void);
18     void name(string X);
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19     string name(void);
20     void run(void);
21     void join(void);
22     friend void *thread(void *X);
23  };
24
25
26
27  class user_thread : public thread_object{
28     private:
29     posix_queue *PosixQueue;
30  protected:
31     virtual void do_something(void);
32  public:
33     user_thread(void);
34     ~user_thread(void);
35  };
36
37
38  #endif   

 The  do_something() = 0  method prevents the user from simply declaring an object of the  
thread_object . Instead, to use the  thread_object  class, the user has to supply functionality for 
 do_something()  by using inheritance with  thread_object  and supplying an implementation 
for  do_something() . In the context of the program of Listing  4 - 2 , the  do_something  method will have 
equivalent functionality to  task1  and  task2  from Lines 19 and 47 in Listing  4 - 2 . The  do_something  
method searches a file looking for the  MagicCode . Also notice Line 22 in Listing  4 - 4 ; the  friend  function 
is also used in conjunction with the  do_something()  method to provide a wrapper for the  pthread_
create()  functionality. The class  user_thread  inherits the  thread_object  class and provides a 
definition for the  do_something()  method. Notice in Listing  4 - 4  that the  user_thread  class also has 
 posix_queue  data member. This was the  PosixQueue  that was used in Listing  4 - 2  on Lines 25 and 53. 
This simple example of a  thread_object  demonstrates a slight but real Object - Oriented departure from 
the procedural only approach in Listing  4 - 2 . 

 Figure  4 - 5  shows a UML class relationship diagram for the  user_thread  class.   

user_thread

thread_object

pthread_t

Figure 4-5
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 The  thread_object  class is just a simple skeleton class so far. We will fill this class ’ s definition in as we 
go along. The  thread_object  class is an interface class. Its purpose is to encapsulate the POSIX thread 
interface and to supply Object - Oriented semantics and components so that we can implement the 
models we produce in the SDLC more easily. Compare the logical breakdown of the components in 
Figure  4 - 3  and Figure  4 - 5 . The focus in Figure  4 - 5  is obviously different because we are doing an Object -
 Oriented decomposition of the  find_code  program. The user_object defines the find_code function 
that inherits the thread_object. The Object - Oriented approach hides the implementation details shown 
in Figure  4 - 3 . Listing  4 - 5  contains some of the implementation for the simple  thread_object  class.

   Listing 4 - 5   

// Listing 4-5 A definition of a simple thread_object.
                
 1  #include �thread_object.h�
 2
 3
 4  thread_object::thread_object(void)
 5  {
 6
 7
 8
 9  }
10  thread_object::~thread_object(void)
11  {
12     pthread_join(Tid,NULL);
13  }
14
15
16  void thread_object::run(void)
17  {
18     pthread_create( & Tid,NULL,thread,this);
19  }
20
21  void thread_object::join(void)
22  {
23     pthread_join(Tid,NULL);
24  }
25
26
27  void thread_object::name(string X)
28  {
29     Name = X;
30  }
31
32  string thread_object::name(void)
33  {
34     return(Name);
35  }
36
37
38  void *  thread (void * X)
39  {
40
41     thread_object *Thread;
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42     Thread = static_cast < thread_object * > (X);
43     Thread- > do_something();
44     return(NULL);
45
46
47  }   

 Now you can see how the  run()  and  thread()  methods together can begin to provide the functionality 
of the  pthread_create()  calls. This is just a start; we can do better. Notice that there is no 
implementation for the  do_something()  method declared in the  thread_object  class. This is the 
method that will be supplied by the user when the  thread_object  class is subclassed. The  Thread -
  > do_something()  on Line 43 in Listing  4 - 5  calls the method that will be provided by a descendant 
class. In our case, this is defined by the definitions in Listing  4 - 6 .

   Listing 4  - 6   

//Listing 4-6  The definition for the user_thread class.
                
 1  #include �thread_object.h�
 2  #include  < iostream > 
 3  #include  < fstream > 
 4
 5  bool Found = false;
 6
 7
 8  user_thread::user_thread(void)
 9  {
10
11     PosixQueue = new posix_queue(�queue_name�);
12     PosixQueue- > queueFlags(O_RDONLY);
13     PosixQueue- > messageSize(14);
14     PosixQueue- > maxMessages(4);
15
16  }
17
18
19  user_thread::~user_thread(void)
20  {
21
22     delete PosixQueue;
23
24  }
25
26
27  void user_thread::do_something(void)
28  {
29     ofstream Fout;
30     string FileName;
31     string Value;
32
33     if(PosixQueue- > open()){
34        PosixQueue- > receive(FileName);
35        ifstream Fin(FileName.c_str());

(continued)
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Listing 4 - 6 (continued)

36        string FileOut(FileName);
37        FileOut.append(�.out�);
38        Fout.open(FileOut.c_str());
39
40        while(!Fin.eof()  &  &  !Fin.fail()  &  &  !Found)
41        {
42           getline(Fin,Value);
43           if(!Fin.eof()  &  &  !Fin.fail()  &  &  !Found){
44              if(Value == MagicCode){
45
46                 Found = true;
47
48              }
49
50           }
51        }
52        Fin.close();
53        Fout.close();
54     }
55
56  }   

 The main work in the  user_thread  class is performed by the  do_something()  method. By overriding 
the  do_something()  method, we can use this  user_thread  class to do any kind of work that can be 
done with the  pthread_create  functionality. In this case, the  do_something()  method performs the 
file search. The  run()  methods from the threads invoked by the  user_thread  object in Listing  4 - 3  
ultimately execute the  do_something()  method. Since the  Found  variable defined on Line 5 is global 
and has file scope, we can use it to stop the threads from searching once the value is located.   

  Program Profile 4 - 4   
Program Name:   

user_thread.cc (Listing 4-6)

     Description: 
 The  user_thread  class is performed by the  do_something()  method that does any kind of work that 
can be done with the  pthread_create  functionality. The  do_something()  method performs the file 
search. The  run()  methods from the threads invoked by the  user_thread  object execute the  do_
something()  method. Since the  Found  variable is global and has file scope, it can stop the threads from 
searching once the value is located.    

Libraries Required:   
pthread

     Additional Source Files Needed: 
  thread_object2.cc  (Listing  4 - 6 )    
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User - Defined Headers Required: 
  thread_object.h  (Listing  4 - 4 )    

Compile Instructions:   
cc++ -c  user_thread.cc

     Test Environment: 
 Linux Kernel 2.6 

 Solaris 10, gcc 3.4.3 and 3.4.6

    Processors: 
 Multicore Opteron, UltraSparc T1, Cell Processor  

  Notes: 
 None 

 Using interface classes in conjunction with POSIX can allow you to build cross - platform components 
that can help with the implementation of cross - platform multithreaded or multiprocessing applications. 
Certainly, the  thread_object  interface class declared in Listing  4 - 4  has to be fleshed out considerably 
before it can be used in production environments, but you can see the point we are making. The C++ 
interface class is heavily used in high - level component libraries and application frameworks like STAPL 
and TBB. If you understand how interface classes are used in conjunction with operating system APIs, 
the relationship between TBB, STAPL, and the operating system APIs will be more apparent. Interface 
classes can be used to add your own building blocks to TBB, STAPL, and other high - level libraries used 
for parallel processing and multithreading.     

  Summary 
 Both application developers and system developers need to have a clear understanding of the role that 
the operating system plays in regard to multiprocessor systems. Ideally, application programmers will 
not have to work directly with operating system primitives. But they still should have a grasp of the 
fundamentals because of the challenges that rise during testing, debugging, and software deployment. 
This chapter discussed the operating system ’ s role in multicore programming. Some key points 
addressed include: 

  The operating system is the gatekeeper of the CMP. Any software that wants to take advantage 
of multiple processors has to negotiate with the operating system. Since the C++ standard does 
not have direct support for process or thread management, you can use the POSIX API to access 
operating system services related to process and thread management.  

  The operating system ’ s role can be divided into two primary functions:  

�    Software interface : Providing a consistent and well - defined interface to the hardware re-
sources of the computer  

�

�
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�    Resource management : Managing the hardware resources and other executing software 
applications, jobs, and programs    

  Instead of forcing the programmer to use particular device - specific instructions, the operating 
system provides the programmer with a couple of layers of software (the API and SPI) between 
the developer ’ s program and the hardware resources connected to the computer.  

  The operating system ’ s core services can be divided into:  

  Process management  

  Memory management  

  Filesystem management  

  I/O management  

  Interprocess Communication Manager    

  The goal of a framework like STAPL is to allow the developer to provide parallelism in a 
software application while not having to worry about all of the specific implementation related 
issues that are involved with parallel programming. A library like the TBB is a set of high - level 
generic components that also encapsulates much of the detail of multiprocessing and 
multithreading.  

  Once the software design process determines that the application is best divided into two or 
more concurrently executing tasks, the transparency of the operating system becomes an issue. 
The idea is to build classes that encapsulate lower - level procedural - driven functionality of the 
operating system APIs, while providing a higher - level declarative interface to the application 
developer.  

  As you move toward more cores and more parallelism, you need to pursue two important steps 
to make software development for massive parallel CMPs practical:  

  Take advantage of the operating system, while making it transparent to software designs  

  Move from procedural paradigms of parallel programming to declarative paradigms    

  Encapsulate operating system process and thread management services in C++ components. 
Then, from the C++ components, build application frameworks that capture architectures that 
support parallelism.    

 Ultimately, the multithreading or multiprocessing functionality contained in class libraries, high - level 
function libraries, or application frameworks still needs to pass through operating system APIs or SPIs. 
In the next two chapters, we go into more detail on the use of processes and threads in multicore 
programming.                           

�

�

�

�

�

�

�

�

�

�

�

�

�
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                                                                                Processes, C++ Interface 
Classes, and Predicates              

  As long as I held the Divine Spear, I had to accept debugging as my primary duty.   

   —  Tatsuya Hamazaki,  .hack//AI Buster 2     

 In Chapter  4 , we looked at the operating system � s role as a development tool for applications that 
required parallel programming. We provided a brief overview of the part that the operating 
system plays in process management and thread management. We introduced the reader to the 
notion of operating system Application Program Interfaces (APIs) and System Program Interfaces 
(SPIs), and in particular we introduced the POSIX API. In this chapter we are going to take a closer 
look at: 

  Where the process fits in with C++ programming and multicore computers  

  The POSIX API for process management  

  Process scheduling and priorities  

  Building C++ interface components that can be used to simplify part of the POSIX API for 
process management    

 Basically, a program can be divided into processes and/or threads in order to achieve concurrency 
and take advantage of multicore processors. In this chapter, we cover how the operating system 
identifies processes and how an application can utilize multiple processes.  

�

�

�

�
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  We Say  Multicore , We Mean  Multiprocessor  
 Keep in mind that the name  multicore  is a popular substitution for  single chip multiprocessor  or  CMP . 
Multiprocessors are computers that have more than two or more CPUs or processors. Although 
multiprocessor computers have been around for some time now, the wide availability and low cost of the 
CMP has brought multiprocessor capabilities within the reach of virtually all software developers. This 
raises a series of questions: How do single applications take advantage of CMPs? How do single user 
versus multiple user applications take advantage of CMPs? Using C++ how do you take advantage of 
the operating system � s multiprocessing and multiprogramming capabilities? Once you have a software 
design that includes a requirement for some tasks to execute concurrently, how do you map those tasks 
to the multiple processors available in your multicore computers? 

 Recall from Chapter  4  that the operating system schedules execution units that it can understand. If your 
software design consists of some tasks that can be executed in parallel, you will have to find a way to 
relate those tasks to execution units the operating system can understand. Association of your tasks with 
operating system execution units is part of a four - stage process involving three transformations. 

 Each transformation in Figure  5 - 1  changes the view of the model, but the meaning of the model should 
remain intact. That is, the implementation of the application frameworks, class libraries, and templates 
as processes and threads should not change the meaning or semantics of what those components are 
doing. The execution units in stage four are what the operating system deals with directly. The execution 
units shown in stage four of Figure  5 - 1  are the only things that can be assigned directly to the cores. 
From the operating system � s viewpoint your application is a collection of one or more processes. 
Concurrency in a C++ application is ultimately accomplished by factoring your program into either 
multiple processes or multiple threads. While there are variations on how the logic for a C++ program 
can be organized (for example, within objects, predicates, functions, or generic templates), the options 
for parallelization (with the exception of instruction level) are accounted for through the use of multiple 
processes and threads.   

General statement of some problem, service, or system

Solution model or system model that might contain a
requirement for concurrently executing tasks

C++ application frameworks, templates, class libraries,
algorithms

Operating system execution units (process, LWPs,
kernel threads)
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E 
3 
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E 
4 
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E 
2 
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E 
1 

TRANSFORMATION #1

TRANSFORMATION #2

TRANSFORMATION #3

Models at this stage will contain
concurrency requirements if there are any.

If parallelism is introduced here that is not present
in stage 2, then this parallelism is not allowed to
change the semantics of the models from stage 2.
Otherwise, the models have to be reworked.
This will be necessary for software maintenance
and change management.

 Figure 5 - 1   
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 This chapter focuses on the notion of a process and how C++ applications and programs can be divided 
into multiple processes using the POSIX API process management services.  

  What Is a Process? 
 A  process  is a unit of work created by the operating system. It is important to note that processes and 
programs are not necessarily equivalent. A program may consist of multiple tasks, and each task can be 
associated with one or more processes. Processes are artifacts of the operating system, and programs are 
artifacts of the developer. Current operating systems are capable of managing hundreds even thousands 
of concurrently loaded processes. In order for a unit of work to be called a process, it must have an 
address space assigned to it by the operating system. It must have a process id. It must have a state and 
an entry in the process table. According to the POSIX standard, it must have one or more flows of 
controls executing within that address space and the required system resources for those flows of 
control. A process has a set of executing instructions that resides in the address space of that process. 
Space is allocated for the instructions, any data that belongs to the process, and stacks for functions calls 
and local variables. One of the important differences between a process and a thread is the fact that each 
process has its own address space, whereas threads share the address space of the processes that created 
them. A program can be broken down into one or more processes.  

  Why Processes and Not Threads? 
 When you are mapping C++ tasks to execution units that the operating system can understand, threads 
turn out to be easier to program. This is because threads share the same address space. This makes 
communication and synchronization between threads much easier. It takes the operating system less 
work to create a thread or to terminate a thread than it takes for processes. In general, you can create 
more threads within the context of a single computer than processes. The starting and stopping of 
threads is typically faster than processes. 

 So why use processes at all? First, processes have their own address space. This is important because 
separate address spaces provide a certain amount security and isolation from rogue or poorly designed 
processes. Second, the number of open files that threads may use is limited to how many open files a 
single process can have. Dividing your C++ application up into multiple processes instead of or in 
conjunction with multithreading provides access to more open file resources. For multiuser applications, 
you want each user � s process to be isolated. If one user � s process fails, the other users can continue to 
perform work. If you use some threading approach for multiuser applications, a single errant thread can 
disrupt all the users. Operating system resources are assigned primarily to processes and then shared by 
threads. So, in general, threads are limited to the number of resources that a single process can have. 
Thus, when isolation security, address space isolation, and maximum number of resources that 
concurrently executing tasks may have are major concerns, it is better to use processes than threads. 
Communication between processes and startup time are the primary tradeoffs. 

 The functions listed in Table  5 - 1  are declared in  spawn.h . This header contains the POSIX functions used 
to spawn and manage processes.    
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  Using posix_spawn() 
 Similarly to the  fork - exec()  and  system()  methods of process creation, the  posix_spawn()  
functions create new child processes from specified process images. But the  posix_spawn()  functions 
create child processes with more fine - grained control during creation. While the POSIX API also 
supports the  fork - exec()  class of functions, we focus on the  posix_spawn  functions for process 
creation to achieve greater cross - platform compatibility. Some platforms may have trouble implementing 
 fork() , so the  posix_spawn()  functions can be used as substitution. These functions control the 
attributes that the child process inherits from the parent process, including: 

  File descriptors  

  Scheduling policy  

  Process group id  

  User and group id  

  Signal mask    

�

�

�

�

�

Table 5-1

Types of POSIX Functions POSIX Functions

Creating processes posix_spawn()
posix_spawnp()

Initializing attributes posix_spawnattr_init()

Destroying attributes posix_spawnattr_destroy()

Setting and retrieving attribute 
values

posix_spawnattr_setsigdefault()
posix_spawnattr_getsigdefault()
posix_spawnattr_setsigmask()
posix_spawnattr_getsigmask()
posix_spawnattr_setflags()
posix_spawnattr_getflags()
posix_spawnattr_setpgroup()
posix_spawnattr_getpgroup()

Process scheduling posix_spawnattr_setschedparam()
posix_spawnattr_setschedpolicy()
posix_spawnattr_getschedparam()
posix_spawnattr_getschedpolicy()
sched_setscheduler()
sched_setparm()

Adding file actions posix_spawn_file_actions_addclose()
posix_spawn_file_actions_adddup2()
posix_spawn_file_actions_addopen()
posix_spawn_file_actions_destroy()
posix_spawn_file_actions_init()
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 They also control whether signals ignored by the parent are ignored by the child or reset to some default 
action. Controlling file descriptors allow the child process independent access to the data stream opened 
by the parent. Being able to set the child � s process group id affects how the child � s job control relates to 
that of the parent. The child � s scheduling policy can be set to be different from the scheduling policy of 
the parent.

  Synopsis  
#include  < spawn.h > 
                 
int posix_spawn(pid_t *restrict pid, const char *restrict path,
                const posix_spawn_file_actions_t *file_actions,
                const posix_spawnattr_t *restrict attrp,
                char *const argv[restrict],
                char *const envp[restrict]);
int posix_spawnp(pid_t *restrict pid, const char *restrict file,
                 const posix_spawn_file_actions_t *file_actions,
                 const posix_spawnattr_t *restrict attrp,
                 char *const argv[restrict],
                 char *const envp[restrict]);   

 The difference between these two functions is that  posix_spawn()  has a  path  parameter and  
posix_spawnp()  has a  file  parameter. The  path  parameter in the  posix_spawn()  function is the 
absolute or relative pathname to the executable program file.  file  in  posix_spawnp()  is the name of 
the executable program. If the parameter contains a slash, then  file  is used as a pathname. If not, the 
path to the executable is determined by  PATH  environment variable. 

  The file_actions Parameter 
 The  file_actions  parameter is a pointer to a  posix_spawn_file_actions_t  structure: 

struct posix_spawn_file_actions_t{
{
   int __allocated;
   int __used;
   struct __spawn_action *actions;
   int __pad[16];
};  

  posix_spawn_file_actions_t  is a data structure that contains information about the actions to be 
performed in the new process with respect to file descriptors.  file_actions  is used to modify the 
parent � s set of open file descriptors to a set file descriptors for the spawned child process. This structure 
can contain several file action operations to be performed in the sequence in which they were added to 
the spawn file action object. These file action operations are performed on the open file descriptors of 
the parent process. These operations can duplicate, duplicate and reset, add, delete, or close a specified 
file descriptor on behalf of the child process even before it � s spawned. If  file_actions  is a null 
pointer, then the file descriptors opened by the parent process remain open for the child process 
without any modifications. Table  5 - 2  lists the functions used to add file actions to the  
posix_spawn_file_actions  object.    
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Table 5-2

File Action Attribute Functions Descriptions

int 
posix_spawn_file_actions_addclose
 (posix_spawn_file_actions_t
  *file_actions, int fildes);

Adds a close() action to a spawn file action object 
specified by file_actions. This causes the file 
descriptor fildes to be closed when the new process is 
spawned using this file action object.

int 
posix_spawn_file_actions_addopen
(posix_spawn_file_actions_t
 *file_actions, int fildes, 
 const char *restrict path, 
 int oflag, mode_t mode);

Adds an open() action to a spawn file action object 
specified by file_actions. This causes the file named 
path with the returned file descriptor fildes to be 
opened when the new process is spawned using this 
file action object.

int 
posix_spawn_file_actions_adddup2
 (posix_spawn_file_actions_t
 *file_actions, int fildes,
int newfildes);

Adds a dup2() action to a spawn file action object 
specified by file_actions. This causes the file 
descriptor fildes to be duplicated with the file 
descriptor newfildes when the new process is 
spawned using this file action object.

int 
posix_spawn_file_actions_destroy
 (posix_spawn_file_actions_t
  *file_actions);

Destroys the specified file_actions object. This 
causes the object to be uninitialized. The object can then 
be reinitialized using posix_spawn_file_actions_
init().

int 
posix_spawn_file_actions_init
 (posix_spawn_file_actions_t
  *file_actions);

Initializes the specified file_actions object. Once 
initialized, it contains no file actions to be performed.

  The attrp Parameter 
 The  attrp  parameter points to a  posix_spawnattr_t  structure: 

struct posix_spawnattr_t
{
   short int __flags;
   pid_t __pgrp;
   sigset_t __sd;
   sigset_t __ss;
   struct sched_param __sp;
   int __policy;
   int __pad[16];
}  

 This structure contains information about the scheduling policy, process group, signals, and flags for the 
new process. The description of individual attributes is as follows: 
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Table 5-3

Spawn Process Attributes Functions Descriptions

int posix_spawnattr_getflags
(const posix_spawnattr_t *restrict 
attr, short *restrict flags);

              
int posix_spawnattr_setflags
(posix_spawnattr_t *attr, 
 short flags);

Returns the value of the __flags attribute stored 
in the specified attr object.

Sets the value of the __flags attribute stored in the 
specified attr object to flags.

int posix_spawnattr_getpgroup
(const posix_spawnattr_t *restrict
 attr, pid_t *restrict pgroup);

              
int posix_spawnattr_setpgroup
(posix_spawnattr_t *attr, 
 pid_t pgroup);

Returns the value of the __pgroup attribute stored 
in the specified attr object and stores it in pgroup.

Sets the value of the __pgroup attribute stored in 
the specified attr object to pgroup if POSIX_
SPAWN_SETPGROUP is set in the __flags attribute.

   __flags : Used to indicate which process attributes are to be modified in the spawned process. 
They are bitwise - inclusive OR of 0 or more of the following:  

   POSIX_SPAWN_RESETIDS   

   POSIX_SPAWN_SETPGROUP   

   POSIX_SPAWN_SETSIGDEF   

   POSIX_SPAWN_SETSIGMASK   

   POSIX_SPAWN_SETSCHEDPARAM   

   POSIX_SPAWN_SETSCHEDULER   

     __pgrp : The id of the process group to be joined by the new process.  

   __sd : Represents the set of signals to be forced to use default signal handling by the new 
process.  

   __ss : Represents the signal mask to be used by the new process.  

   __sp : Represents the scheduling parameter to be assigned to the new process.  

   __policy : Represents the scheduling policy to be used by the new process.    

 Table  5 - 3  lists the functions used to set and retrieve the individual attributes contained in the 
 posix_spawnattr_t  structure.    
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Table continued on following page

c05.indd   101c05.indd   101 7/31/08   2:50:27 PM7/31/08   2:50:27 PM



Chapter 5: Processes, C++ Interface Classes, and Predicates

102

Spawn Process Attributes Functions Descriptions

int posix_spawnattr_getschedparam
(const posix_spawnattr_t 
*restrict attr, struct sched_param 
*restrict schedparam);

              
int posix_spawnattr_setschedparam
(posix_spawnattr_t *attr, 
 const struct sched_param *restrict 
 schedparam);

Returns the value of the __sp attribute stored in the 
specified attr object and stores it in schedparam.

Sets the value of the __sp attribute stored in the 
specified attr object to schedparam if POSIX_
SPAWN_SETSCHEDPARAM is set in the __flags 
attribute.

int posix_spawnattr_getpschedpolicy
(const posix_spawnattr_t *restrict
 attr, int *restrict schedpolicy);

              
int posix_spawnattr_setpschedpolicy
(posix_spawnattr_t *attr, 
 int schedpolicy);

Returns the value of the __policy attribute stored 
in the specified attr object and stores it in 
schedpolicy.

Sets the value of the __policy attribute stored in 
the specified attr object to schedpolicy if 
POSIX_SPAWN_SETSCHEDULER is set in the __
flags attribute.

int posix_spawnattr_getsigdefault
(const posix_spawnattr_t *restrict
 attr, sigset_t *restrict 
 sigdefault);

              
int posix_spawnattr_setsigdefault
(posix_spawnattr_t *attr, 
 const sigset_t *restrict 
 sigdefault);

Returns the value of the __sd attribute stored in the 
specified attr object and stores it in sigdefault.

Sets the value of the __sd attribute stored in the 
specified attr object to sigdefault if POSIX_
SPAWN_SETSIGDEF is set in the __flags attribute.

int posix_spawnattr_getsigmask
(const posix_spawnattr_t *restrict
 attr, sigset_t *restrict sigmask);

              
int posix_spawnattr_setsigmask
(posix_spawnattr_t *restrict attr,
 const sigset_t *restrict sigmask);

Returns the value of the __ss attribute stored in the 
specified attr object and stores it in sigmask.

Sets the value of the __ss attribute stored in the 
specified attr object to sigmask if POSIX_SPAWN_
SETSIGMASK is set in the __flags attribute.

int posix_spawnattr_destroy
(posix_spawnattr_t *attr);

Destroys the specified attr object. The object can 
then become reinitialized using posix_
spawnattr_init().

int posix_spawnattr_init
(posix_spawnattr_t *attr);

Initializes the specified attr object with default 
values for all of the attributes contained in the 
structure.
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  A Simple posix_spawn() Example 
 Example  5 - 1  shows how the  posix_spawn()  function can be used to create a process.

   Example 5 - 1   

// Example 5-1 Spawns a process, using the posix_spawn()
// function that calls the ps utility.
                 
#include  < spawn.h > 
#include  < stdio.h > 
#include  < errno.h > 
#include  < iostream > 
{
   //...
   posix_spawnattr_t X;
   posix_spawn_file_actions_t Y;
   pid_t Pid;
   char * argv[] = {�/bin/ps�,�-lf�,NULL};
   char * envp[] = {�PROCESSES=2�};
   posix_spawnattr_init( & X);
   posix_spawn_file_actions_init( & Y);
   posix_spawn( & Pid,�/bin/ps�, & Y, & X,argv,envp);
   perror(�posix_spawn�);
   cout  <  <  �spawned PID: �  <  <  Pid  <  <  endl;
   //...
   return(0);
                 
}   

 In Example  5 - 1 ,  posix_spawnattr_t  and  posix_spawn_file_actions_t  objects are initialized. 
 posix_spawn()  is called with the arguments PID; path; Y; X;  argv , which contains the command as the 
first element and the argument as the second; and  envp , the environment list. If  posix_spawn()  is 
successful, then the value stored in  Pid  will be the PID of the spawned process.  perror  displayed: 

posix_spawn: Success  

 and the  Pid  is sent to output. The spawned process, in this case, executes: 

/bin/ps -lf  

 These functions return the process id of the child process to the parent process in the  pid  parameter and 
return 0 as the return value. If the function is unsuccessful, no child process is created; thus, no  pid  is 
returned, and an error value is returned as the return value of the function. Errors can occur on three 
levels when using the spawn functions.   
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  An error can occur if the  file_actions  or  attr  objects are invalid. If this occurs after the 
function has successfully returned (the child process was spawned), then the child process may 
have an exit status of 127.  

  If the spawn attribute functions cause an error, then the error produced for that particular 
function (listed in Tables  5 - 2  and  5 - 3 ) is returned. If the spawn function has already successfully 
returned, then the child process may have an exit status of 127.  

  Errors can also occur when you are attempting to spawn the child process. These errors would 
be the same errors produced by  fork()  or  exec()  functions. If they occur, they will be the 
return values for the spawn functions.    

 If the child process produces an error, it is not returned to the parent process. For the parent process to be 
aware that the child has produced an error, you have to use other mechanisms since the error will not be 
stored in the child � s exit status. You can use Interprocess Communication, or the child can set some flag 
visible to the parent.  

  The guess_it Program Using posix_spawn 
 Listing  5 - 1  recalls the  � guess the mystery code �  program from Chapter  4 , Listing  4 - 1 , that spawned two 
child processes.

   Listing 5 - 1   

// Listing 5-1  Program used to launch ofind_code.
                 
 1  using namespace std;
 2  #include  < iostream > 
 3  #include  < string > 
 4  #include  < spawn.h > 
 5  #include  < sys/wait.h > 
 6
 7  int main(int argc,char *argv[],char *envp[])
 8  {
 9
10     pid_t ChildProcess;
11     pid_t ChildProcess2;
12     int RetCode1;
13     int RetCode2;
14     int Value;
15     RetCode1 = posix_spawn( & ChildProcess,�find_code�,NULL,
16                              NULL,argv,envp);
17     RetCode2 = posix_spawn( & ChildProcess2,�find_code�,NULL,
18                              NULL,argv,envp);
19     wait( & Value);
20     wait( & Value);
21     return(0);
22  }   

�

�

�
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 In Example  5 - 1 , we used  posix_spawn  to launch the  ps  shell utility. Here in Listing  5 - 1 , we use  posix_
spawn  to launch the  ofind_code  program. This illustrates an important feature of  posix_spawn() ; it is 
used to launch programs external to the calling program. Any programs that are located on the local 
computer can be easily launched with  posix_spawn() . The  posix_spawn()  calls in Listing  5 - 1 , lines 15 
and16 have a terse interface. In Chapter  4 , we introduced the notion of interface classes, which can start 
you on the road to a more declarative style multicore programming. Interface classes are easy to 
implement. Listing  5 - 2  shows a simple interface class that you can use to encapsulate the basics of the 
 posix_spawn()  functions.

   Listing 5 - 2   

//Listing 5-2  An initial interface class for a posix process.
                 
 1  #ifndef __POSIX_PROCESS_H
 2  #define __POSIX_PROCESS_H
 3  using namespace std;
 4
 5  #include  < spawn.h > 
 6  #include  < errno.h > 
 7  #include  < iostream > 
 8  #include  < string > 
 9
10
11  class posix_process{
12  protected:
13     pid_t  Pid;
14     posix_spawnattr_t   SpawnAttr;
15     posix_spawn_file_actions_t   FileActions;
16     char **argv;
17     char **envp;
18     string ProgramPath;
19  public:
20     posix_process(string Path,char **av,char **env);
21     posix_process(string Path,char **av,char **env, posix_spawnattr_t X,
                     posix_spawn_file_actions_t Y);
22     void run(void);
23     void pwait(int  & X);
24  };
25
26
27  #endif
28   

 This simple interface class can be used to add a more object - oriented approach to process management. 
It makes it easier to move from models shown in Stage 2 in Figure  5 - 1  to the execution units in Stage 4. 
It also makes the OS API calls transparent to the user. For example, the  guess_it  program shown in 
Listing  5 - 1  can be restated as shown in Listing  5 - 3 .
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   Listing 5 - 3   

//Listing 5-3  Our guess_it program using an interface class for the posix_spawn 
capability.
                 
                 
 1  #include �posix_process.h�
 2
 3  int main(int argc,char *argv[],char *envp[])
 4  {
 5     int Value;
 6     posix_process  Child1(�ofind_code�,argv,envp);
 7     posix_process  Child2(�ofind_code�,argv,envp);
 8     Child1.run();
 9     Child2.run();
10     Child1.pwait( & Value);
11     Child2.pwait( & Value);
12     return(0);
13  }
14   

 Recall from Chapter  4  that the  guess_it  program spawns two child processes. Each child process in 
turn spawns two threads. The resulting four threads are used to search files. The value of the interface 
class as a tool for converting procedural paradigms into Object - Oriented declarative approaches cannot 
be overstated. Once you have a  posix_process  class, it can be used like a datatype with the container 
classes. This means that you can have: 

vector < posix_process > 
list < posix_process > 
multiset < posix_process > 
etc...  

 thinking about processes and threads as objects as opposed to sequences of actions, which is a big step in 
the direction of the declarative models of parallel programming. Listing  5 - 4  shows the initial method 
definitions for the  posix_process  interface class.

   Listing 5 - 4   

// Listing 5-4 The initial method definitions for the posix_process interface class.
                 
 1  #include �posix_process.h�
 2  #include  < sys/wait.h > 
 3
 4
 5  posix_process::posix_process(string Path,char **av,char **env)
 6  {
 7
 8     argv = av;
 9     envp = env;
10     ProgramPath = Path;
11     posix_spawnattr_init( & SpawnAttr);
12     posix_spawn_file_actions_init( & FileActions);
13
14
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15  }
16
17  posix_process::posix_process(string Path,char **av,char **env,
                   posix_spawnattr_t  X, posix_spawn_file_actions_t Y)
18  {
19     argv = av;
20     envp = env;
21     ProgramPath = Path;
22     SpawnAttr = X;
23     FileActions = Y;
24     posix_spawnattr_init( & SpawnAttr);
25     posix_spawn_file_actions_init( & FileActions);
26
27
28
29  }
30
31  void posix_process::run(void)
32  {
33
34     posix_spawn( & Pid,ProgramPath.c_str(), & FileActions,
                    & SpawnAttr,argv,envp);
35
36
37  }
38
39  void posix_process::pwait(int  & X)
40  {
41
42     wait( & X);
43  }   

 The  run()  method defined on Line 31 in Listing  5 - 4  adapts the interface to the  posix_spawn()  
function. You can build on these declarations by adding methods that adapt the interface of all of the 
functions listed in Table  5 - 2  and Table  5 - 3 . Once completed, you can add process building blocks to your 
object -o riented toolkit.   

  Who Is the Parent? Who Is the Child? 
 There are two functions that return the process id (PID) of the process and parent process: 

   getpid()  returns the process id of the calling process.  

   getppid()  returns the parent id of the calling process.    

 These functions are always successful; therefore no errors are defined.

  Synopsis  
#include  < unistd.h > 
                 
pid_t getpid(void);
pid_t getppid(void);    

�

�
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  Processes: A Closer Look 
 When a process executes, the operating system assigns the process to a processor. The process executes 
its instructions for a quantum. The process is preempted, so another process can be assigned the 
processor. The operating system scheduler switches between the code of one process, user, or system to 
the code of another process, giving each process a chance to execute its instructions. There are system 
and user processes.   

  Processes that execute system code are called  system processes , also sometimes referred to as 
 kernel processes . System processes administer the whole system. They perform housekeeping 
tasks such as allocating memory, swapping pages of memory between internal and secondary 
storage, checking devices, and so on. They also perform tasks on behalf of the user processes 
such as filling I/O requests, allocating memory, and so forth.  

   User processes  execute their own code, and sometimes they make system function calls. When a 
user process executes its own code, it is in  user mode . In user mode, the process cannot execute 
certain privileged machine instructions. When a user process makes a system function call 
(for example,  read() ,  write() , or  open() ), it is executing operating system instructions. What 
occurs is the user process is put on hold until the system call has completed. The processor is 
given to the kernel to complete the system call. At that time the user process is said to be in 
 kernel mode  and cannot be preempted by any user processes.    

  Process Control Block 
 Processes have characteristics that identify them and determine their behavior during execution. The 
kernel maintains data structures and provides system functions that allow the user to have access to this 
information. Some information is stored in the  process control block (PCB) . The information stored in the 
PCB describes the process to the operating system. This PCB is part of the heavy weight of the process. 
This information is needed for the operating system to manage each process. When the operating system 
switches between a process utilizing the CPU to another process, it saves the current state of the 
executing process and its context to the PCB save area in order to restart the process the next time it is 
assigned to the CPU. The PCB is read and changed by various modules of the operating system. 
Modules concerned with the monitoring the operating system � s performance, scheduling, allocation of 
resources, and interrupt processing all will access and/or modify the PCB. The PCB is what makes the 
process visible to the operating system and entities like user threads invisible to the operating system. 

 PCB information includes: 

  Current state and priority of the process  

  Process, parent, and child identifiers  

  Pointers to allocated resources  

  Pointers to location of the process � s memory  

  Pointer to the process � s parent and child processes  

  Processor utilized by process  

  Control and status registers  

  Stack pointers    
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 The information stored in the PCB can be organized as follows: 

  Information concerned with  process control , such as the current state and priority of the 
process, pointers to parent/child PCB � s, allocated resources, and memory. This also includes any 
scheduling related information, process privileges, flags, messages, and signals that have to do 
with communication between processes (IPC  �  Interprocess Communication). The process 
control information is required by the operating system in order to coordinate the concurrently 
active processes.  

  The content of user, control, and status registers and stack pointers are all types of information 
concerned with the  state of the processor . When a process is running, information is placed in 
the registers of the CPU. Once the operating system decides to switch to another process, all the 
information in those registers has to be saved. When the process gains the use of the CPU again, 
this information can be restored.  

  Other information has to do with  process identification . This is the process id, PID, and the 
parent process id, PPID. These identification numbers are unique for each process. They are 
positive, nonzero integers.     

  Anatomy of a Process 
 The address space of a process is divided into three logical segments:  text  (program code),  data , and  stack  
segments. Figure  5 - 2  shows the logical layout of a process. The text segment is at the bottom of the 
address space. The text segment contains the instructions to be executed called the  program code . The data 
segment above it contains the initialized global, external, and static variables for the process. The 
stack segment contains locally allocated variables and parameters passed to functions. Because a process 
can make system function calls as well as user - defined function calls, two stacks are maintained in the 
stack segment, the  user stack  and the  kernel stack . When a function call is made, a stack - frame is 
constructed and pushed onto either the user or kernel stack, depending on whether the process is in user 
or kernel mode. The stack segment grows downward toward the data segment. The stack frame is 
popped from the stack when the function returns. The text, data, and stack segments and the process 
control block are part of what forms the  process image .   
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 The address space of a process is  virtual . Virtual storage dissociates the addresses referenced in an 
executing process from the addresses actually available in internal memory. This allows the addressing 
of storage space much larger than what is available. The segments of the process � s virtual address space 
are contiguous blocks of memory. Each segment and physical address space are broken up into chunks 
called  pages . Each page has a unique  page frame number . The virtual page frame number (VPFN) is used 
as an index into the process � s page tables. The  page tables  entries contain a physical page frame number 
(PFN), thus mapping the virtual page frames to physical page frames. This is depicted in Figure  5 - 3 . As 
illustrated, virtual address space is contiguous but it is mapped to physical pages in any order.   
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 Even though the virtual address space of each process is protected to prevent another process from 
accessing it, the text segment of a process can be shared among several processes. Figure  5 - 3  also shows 
how two processes can share the same program code. The same physical page frame number is stored in 
the page table entries of both processes �  page tables. As illustrated in Figure  5 - 3 , process A � s virtual page 
frame 0 is mapped to physical page frame 5, as is process B � s virtual page frame 2. 

 For the operating system to manage all the processes stored in internal memory, it creates and maintains 
 process tables . Actually, the operating system has a table for all of the entities that it manages. Keep in 
mind that the operating system manages not only processes but all the resources of the computer 
including devices, memory, and files. Some of the memory, devices, and files are managed on the behalf 
of the user processes. This information is referenced in the PCB as resources allocated to the process. The 
process table has an entry for each process image in memory. This is depicted in Figure  5 - 4 . Each entry 
contains the process and parent process id; the real and effective user id and group id; a list of pending 
signals; the location of the text, data, and stack segments; and the current state of the process. When 
the operating system needs to access a process, the process is looked up in the process table, and then the 
process image is located in memory.    
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Figure 5-4

  Process States 
 During a process � s execution, it changes its state. The  state  of the process is the current condition or 
status of the process. In a POSIX - compliant environment, a process can be in the following states: 

  Running  

  Runnable (ready)  

  Zombied  

�

�

�
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  Waiting (blocked)  

  Stopped    

 The current condition of the process depends upon the circumstances created by the process or by the 
operating system. When certain circumstances exist, the process will change its state.  State transition  is 
the circumstance that causes the process to change its state. Figure  5 - 5  is the state diagram for the 
processes. The state diagram has nodes and directed edges between the nodes. Each node represents the 
state of the process. The directed edges between the nodes are state transitions. Table  5 - 4  lists the state 
transitions with a brief description. As Figure  5 - 5  and Table  5 - 4  show, only certain transitions are allowed 
between states. For example, there is a transition, an edge, between ready and running, but there is no 
transition, no edge, between sleeping and running. Meaning, there are circumstances that causes a 
process to move from the ready state to the running state, but there are no circumstances that cause 
a process to move from the sleeping state to a running state.     

�

�

READY 
(runnable)

STOPPED

RUNNING

SLEEPING ZOMBIED

signaledsignaled

preempt

dispatch

timer runout

event occurs 
or I/O complete

wait on event 
or I/O terminated

exit 
system

exit
system

enters 
system

Figure 5-5

Table 5-4

State Transitions Descriptions

READY->RUNNING 
(dispatch)

The process is assigned to the processor.

RUNNING->
READY(timer 
runout)

RUNNING->
READY(preempt)

The time slice the process assigned to the processor has run out. The 
process is placed back in the ready queue.

The process has been preempted before the time slice ran out. This can 
occur if a process with a higher priority is runnable. The process is placed 
back in the ready queue.

c05.indd   112c05.indd   112 7/31/08   2:50:31 PM7/31/08   2:50:31 PM



Chapter 5: Processes, C++ Interface Classes, and Predicates

113

State Transitions Descriptions

RUNNING->
SLEEPING (block)

The process gives up the processor before the time slice has run out. The 
process may need to wait for an event or has made a system call, for 
example, a request for I/O. The process is placed in a queue with other 
sleeping processes.

SLEEPING->READY 
(unblock)

The event the process was waiting for has occurred, or the system call 
has completed. For example, the I/O request is filled. The process is 
placed back in the ready queue.

RUNNING->
STOPPED

The process gives up the processor because it has received a signal to 
stop.

STOPPED->READY The process has received the signal to continue and is placed back in the 
ready queue.

RUNNING->
ZOMBIED

The process has been terminated and awaits the parent to retrieve its exit 
status from the process table.

ZOMBIED->EXIT The parent process has retrieved the exit status, and the process exits the 
system.

RUNNING->EXIT The process has terminated, the parent has retrieved the exit status, and 
the process exits the system.

 When a process is created, it is ready to execute its instructions but must first wait until the processor is 
available. Each process is allowed to use the processor only for a discrete interval called a  time slice . 
Processes waiting to use the processor are placed in ready queues. Only processes in the ready queues 
are selected (by the scheduler) to use the processor. Processes in the ready queues are  runnable . When the 
processor is available, a runnable process is assigned the processor by the dispatcher. When the time 
slice has expired, the process is removed from the processor, whether it has finished executing all its 
instructions or not. The process is placed back in the ready queue to wait for its next turn to use the 
processor. A new process is selected from a ready queue and is given its time slice to execute. System 
processes are not preempted. When they are given the processor, they run until completion. If the time 
slice has not expired, a process may voluntarily give up the processor if it cannot continue to execute 
because it must wait for an event to occur. The process may have made a request to access an I/O device 
by making a system call, or it may need to wait on a synchronization variable to be released. Processes 
that cannot continue to execute because they are waiting for an event to occur are in a  sleeping state . They 
are placed in a queue with other sleeping processes. They are removed from that queue and placed back 
in the ready queue when the event has occurred. The processor may be taken away from a process before 
its time slice has run out. This may occur if a process with a higher priority, like a system process, is 
runnable. The preempted process is still runnable and, therefore, is placed back in the ready queue. 

 A running process can receive a signal to stop. The  stopped state  is different from a sleeping state. The 
process � s time slice has not expired nor has the process made any request of the system. The process may 
receive a signal to stop because it is being debugged or some situation has occurred in the system. The 
process has made a transition from running to stopped state. Later the process may be awakened, or it 
may be destroyed. 
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 When a process has executed all its instructions, it exits the system. The process is removed from the 
process table, the PCB is destroyed, and all of its resources are deallocated and returned to the system 
pool of available resources. A process that is unable to continue executing but cannot exit the system is in 
a  zombied state . A zombied process does not use any system resources, but it still maintains an entry in 
the process table. When the process table contains too many zombied processes, this can affect the 
performance of the system, possibly causing the system to reboot.  

  How Are Processes Scheduled? 
 When a ready queue contains several processes, the scheduler must determine which process should be 
assigned to a processor first. The scheduler maintains data structures that allow it to schedule the 
processes in an efficient manner. Each process is given a priority class and placed in a priority queue 
with other runnable processes with the same priority class. There are multiple priority queues, each 
representing a different priority class used by the system. These priority queues are stratified and placed 
in a dispatch array called the  multilevel priority queue . Figure  5 - 6  depicts the multilevel priority queue. 
Each element in the array points to a priority queue. The scheduler assigns the process at the head of the 
nonempty highest priority queue to the processor.   
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PID 71 PID 35 PID 63

CORE 0

PID 71
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CORE 1

PID 35
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SCHEDULER

DISPATCHER

...

...

Figure 5-6

 Priorities can be  dynamic  or  static . Once a static priority of a process is set, it cannot be changed. Dynamic 
priorities can be changed. Processes with the highest priority can monopolize the use of the processor. If 
the priority of a process is dynamic, the initial priority can be adjusted to a more appropriate value. The 
process is placed in a priority queue that has a higher priority. A process monopolizing the processor can 
also be given a lower priority, or other processes can be given a higher priority than that process has. 
When you are assigning priority to a user process, consider what the process spends most of its time 
doing. Some processes are CPU - intensive. CPU - intensive processes use the processor for the whole time 
slice. Some processes spend most of its time waiting for I/O or some other event to occur. When such a 
process is ready to use the processor, it should be given the processor immediately so it can make its next 
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request for I/O. Processes that are interactive may require a high priority to assure good response time. 
System processes have a higher priority than user processes. 

 The processes are placed in a priority queue according to a scheduling policy. Two of the primary 
scheduling policies used in the POSIX API are the First - In, First - Out (FIFO) and round robin (RR) 
policies.   

  Figure  5 - 7  (a) shows the  FIFO scheduling policy . With a FIFO scheduling policy, processes are 
assigned the processor according to the arrival time in the queue. When a running process time 
slice has expired, it is placed at the head of its priority queue. When a sleeping process becomes 
runnable, the process is placed at the end of its priority queue. A process can make a system call 
and give up the processor to another process with the same priority level. The process is then 
placed at the end of its priority queue.  

  In  round robin scheduling policy , all processes are considered equal. Figure  5 - 7  (b) depicts the 
RR scheduling policy. RR scheduling is the same as FIFO scheduling with one exception: When 
the time slice expires, the process is placed at the back of the queue and the next process in the 
queue is assigned the processor.      
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 Figure  5 - 7  shows the behavior of the FIFO and RR scheduling policies. The FIFO scheduling policy 
assigns processes to the processor according to its arrival time in the queue. The process runs until 
completion. RR scheduling policy assigns processes using FIFO scheduling, but when the time slice runs 
out, the process is placed at the back of the ready queue.   

  Monitoring Processes with the ps Utility 
 The  ps  utility generates a report that summarizes execution statistics for the current processes. This 
information can be used to monitor the status of current processes. Table  5 - 5  lists the common headers 
and the meaning of the output for the  ps  utility for the Solaris/Linux environments.   

Table 5-5

Headers Description Headers Description

USER, UID Username of process owner TT, TTY Process�s controlling terminal

PID
PPID

Process ID
Parent process ID

S, STAT Current state of the process

PGID
SID

ID of process group leader
ID of session leader

TIME Total CPU time used by the 
process (HH:MM:SS)

%CPU Percentage of CPU time used by 
the process in the last minute

STIME, 
START

Time or date the process 
started

RSS Amount of real RAM currently 
used by the process in k

NI Nice value of the process

%MEM Percentage of real RAM used by 
the process in the last minute

PRI Priority of the process

SZ Size of virtual memory of the 
process�s data and stack in k or 
pages

C, CP Short term CPU-use factor 
used by scheduler to compute 
PRI

WCHAN Address of an event for which a 
process is sleeping

ADDR Memory address of a process

COMMAND 
CMD

Command name and arguments LWP
NLWP

ID of the lwp (thread)
The number of lwps

 In a multiprocessor environment, the  ps  utility is useful to monitor the state, CPU and memory usage, 
processor utilized, priority, and start time of the current processes executing. Command options control 
which processes are listed and what information is displayed about each process. In the Solaris 
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environment, by default (meaning no command options are used), information about processes with 
the same effective user id and controlling terminal of the calling invoker is displayed. In the 
Linux environment, by default, the processes with the same user id as the invoker are displayed. In both 
environments, the only information that is displayed is  PID ,  TTY ,  TIME , and  COMMAND . These are some of 
the options that control which processes are displayed: 

    - t term : List the processes associated with the terminal specified by  term   

    - e : All current processes  

    - a : (Linux) All processes with tty terminal except the session leaders  

  (Solaris) Most frequently requested processes except group leaders and processes not associated 
with a terminal  

    - d : All current processes except session leaders  

   T : (Linux) All processes in this terminal  

   a : (Linux) All processes including those of other users  

   r : (Linux) Only running processes  

   Synopsis  
(Linux)
ps -[Unix98 options]
   [BSD-style options]
   --[GNU-style long options
                 
(Solaris)
ps [-aAdeflcjLPy][-o format][-t termlist][-u userlist]
   [-G grouplist][-p proclist][-g pgrplist][-s sidlist]   

 The following lists some of the command options used to control the information displayed about the 
processes: 

    - f : Full listings  

    - l : Long format  

    - j : Jobs format    

 This is an example of using the  ps  utility in Solaris/Linux environments: 

ps -f  

�

�

�

�

�
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�
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�

c05.indd   117c05.indd   117 7/31/08   2:50:33 PM7/31/08   2:50:33 PM



Chapter 5: Processes, C++ Interface Classes, and Predicates

118

 The   - l  command option shows the additional headers F, S, PRI, NI, ADDR, SZ, and WCHAN. 

 The  P  command option displays the PSR header. Under this header is the number of the processor to 
which the process is assigned or bound. 

 Figure  5 - 9  shows the output of the  ps  utility using the  Tux  command options in the Linux environment.   

 The  %CPU ,  %MEM , and  STAT  information is displayed for the processes. In a multiprocessor environment, 
this information can be used to monitor which processes are dominating CPU and memory usage. The 
 STAT  header shows the state or status of the process. Table  5 - 6  lists how the status is encoded and their 
meanings.   

 This displays information about the default processes in each environment. Figure  5 - 8  shows the output 
in the Solaris environment. The command options can also be used in tandem. Figure  5 - 8  also shows the 
output of using   - l  and   - f  together in the Solaris environment: 

ps -lf    

//SOLARIS

$ ps -f
     UID   PID  PPID  C    STIME    TTY   TIME CMD
 cameron  2214  2212  0 21:03:35 pts/12   0:00 -ksh
 cameron  2396  2214  2 11:55:49 pts/12   0:01 nedit

$ ps -lf
F S     UID   PID  PPID  C PRI NI     ADDR  SZ    WCHAN    STIME    TTY TIME   CMD
8 S cameron  2214  2212  0  51 20 70e80f00 230 70e80f6c 21:03:35 pts/12 0:00  -ksh
8 S cameron  2396  2214  1  53 24 70d747b8 843 70152aba 11:55:49 pts/12 0:01 nedit

Figure 5-8

[tdhughes@colony]$ ps Tux
USER       PID %CPU %MEM   VSZ  RSS   TTY  STAT    START   TIME COMMAND
tdhughes 19259  0.0  0.1  2448 1356  pts/4    S    20:29   0:00 -bash
tdhughes 19334  0.0  0.0  1732  860  pts/4    S    20:33   0:00 /home/tdhughes/pv
tdhughes 19336  0.0  0.0  1928  780  pts/4    S    20:33   0:00 /home/tdhughes/pv
tdhughes 19337 18.0  2.4 26872 24856 pts/4    R    20:33   0:47 /home/tdhughes/pv
tdhughes 19338 18.0  2.3 26872 24696 pts/4    R    20:33   0:47 /home/tdhughes/pv
tdhughes 19341 17.9  2.3 26872 24556 pts/4    R    20:33   0:47 /home/tdhughes/pv
tdhughes 19400  0.0  0.0  2544  692  pts/4    R    20:38   0:00 ps Tux
tdhughes 19401  0.0  0.1  2448 1356  pts/4    R    20:38   0:00 -bash          

//Linux

Figure 5-9
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 The  STAT  header can reveal additional information about the status of the process: 

   D : (BSD) Disk wait  

   P : (BSD) Page wait  

   X : (System V) Growing: waiting for memory  

   W : (BSD) Swapped out  

   K : (AIX) Available kernel process  

   N : (BSD) Niced: execution priority lowered  

    >  : (BSD) Niced: execution priority artificially raised  

    <  : (Linux) High - priority process  

   L : (Linux) Pages are locked in memory    

 These codes precede the status codes. If an  N  precedes the status, this means that the process is running 
at a lower priority level. If a process has a status S < W, this means the process is sleeping, swapped out, 
and has a high priority level.  

  Setting and Getting Process Priorities 
 The priority level of a process can be changed by using the  nice()  function. Each process has a nice 
value that is used to calculate the priority level of the calling process. A process inherits the priority of 
the process that created it. But the priority of a process can be lowered by raising its nice value. Only 
superuser and kernel processes can raise priority levels.

  Synopsis  
#include  < unistd.h > 
                 
int nice(int incr);   

�

�

�

�

�

�

�

�

�

Table 5-6

Status of Process Description

D Uninterruptible sleep (usually I/O)

R Running or runnable (on run queue)

S Interruptible sleep (waiting for an event to complete)

T Stopped either by a job control signal or because it is being traced

Z �Zombie� process, terminated with no parent
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 A low nice value raises the priority level of the process. The  incr  parameter is the value added to the 
current nice value of the calling process. The  incr  can be negative or positive. The nice value is a non -
 negative number. A positive  incr  value raises the nice value, thus lowering the priority level. A negative 
 incr  value lowers the nice value, thus raising the priority level. If the  incr  value raises the  nice  value 
above or below its limits, the  nice  value of the process is set to the highest or lowest limit accordingly. If 
successful, the  nice()  function returns the new nice value of the process. If unsuccessful, the function 
returns  - 1, and the nice value is not changed.

  Synopsis  
#include  < sys/resource.h > 
                 
int getpriority(int which, id_t who);
int setpriority(int which, id_t who, int value);   

  setpriority()  sets the nice value for a process, process group, or user.  getpriority()  returns the 
priority of a process, process group, or user. Example  5 - 2  shows the syntax for the functions 
 setpriority()  and  getpriority()  to set and return the nice value of the current process.

   Example 5 - 2   

//Example 5-2 shows how setpriority() and getpriority() can be used.
                 
#include  < sys/resource.h > 
                 
//...
id_t pid = 0;
int which  = PRIO_PROCESS;
int value = 10;
int nice_value;
int ret;
                 
nice_value = getpriority(which,pid);
if(nice_value  <  value){
   ret = setpriority(which,pid,value);
}
//...   

 In Example  5 - 2 , the priority of the calling process is being returned and set. If the calling process � s nice 
value is  <  10, the nice value of the process is set to 10. The target process is determined by the values 
stored in the  which  and  who  parameters. The  which  parameter can specify a process, process group, or a 
user. It can have the following values: 

   PRIO_PROCESS : Indicates a process  

   PRIO_PGRP : Indicates a process group  

   PRIO_USER : Indicates a user    

 Depending on the value of  which , the  who  parameter is the id number of a process, process group, or 
effective user. In Example  5 - 2 ,  which  is assigned  PRIO_PROCESS . A 0 value for  who  indicates the current 
process, process group, or user. In Example  5 - 2 ,  who  is set to 0, indicating that the current process value 
for  setpriority()  will be the new nice value for the specified process, process group, or user. 

�

�

�
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 The range of nice value in the Linux environment is  - 20 to 19. In Example  5 - 2 , the value of nice is set to 10 if 
the current nice value is less than 10. In contrast to how things worked with the function  nice() , the value 
passed to  setpriority()  is the actual value of nice, not an offset to be added to the current nice value. In 
a process with multiple threads, the modification of the priority affects the priority of all the threads in that 
process. If successful,  getpriority()  returns the nice value of the specified process. If successful, 
 setpriority()  returns 0. If unsuccessful, both functions return  - 1. The return value  - 1 is a legitimate 
nice value for a process. To determine if an error has occurred, check the external variable  errno .  

  What Is a Context Switch? 
 A  context switch  occurs when the use of the processor is switched from one process to another process. 
When a context switch occurs, the system saves the context of the current running process and restores 
the context of the next process selected to use the processor. The PCB of the preempted process is 
updated. The process state field is changed from the running to the appropriate state (runnable, blocked, 
zombied, or so forth). The contents of the processor � s registers, state of the stack, user and process 
identification and privileges, and scheduling and accounting information are saved and updated. 

 The system must keep track of the status of the process � s I/O and other resources, and any memory 
management data structures. The preempted process is placed in the appropriate queue. 

 A context switch occurs when a: 

  Process is preempted  

  Process voluntarily gives up the processor  

  Process makes an I/O request or needs to wait for an event  

  Process switches from user mode to kernel mode    

 When the preempted process is selected to use the processor again, its context is restored, and execution 
continues where it left off.  

  The Activities in Process Creation 
 To run any program, the operating system must first create a process. When a new process is created, a 
new entry is placed in the main process table. A new PCB is created and initialized. The process 
identification portion of the PCB contains a unique process id number and the parent process id. The 
program counter is set to point to the program entry point, and the system stack pointers are set to 
define the stack boundaries for the process. The process is initialized with any of the attributes 
requested. If the process is not given a priority value, it is given the lowest - priority value by default. The 
process initially does not own any resources unless there is an explicit request for resources or they have 
been inherited from the creator process. The state of the process is runnable, and it is placed in the 
runnable or ready queue. Address space is allocated for the process. How much space to be set aside can 
be determined by default, based on the type of process. The size can also be set as a request by the 
creator of the process. The creator process can pass the size of the address space to the system at the time 
the process is created. 

�
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  Using the fork() Function Call 
 In addition to  posix_spawn() , for creating processes the POSIX API also supports the  fork / exec  
functions. These functions are available in all Unix/Linux derivatives. The  fork()  call creates a new 
process that is a duplication of the calling process, the parent. The  fork()  returns two values if it 
succeeds, one to the parent and one to the child process. It returns 0 to the child process and returns the 
PID of the child to the parent process. The parent and child processes continue to execute from the 
instruction immediately following the  fork()  call. If not successful, meaning that no child process was 
created,  - 1 is returned to the parent process.

  Synopsis  
#include  < unistd.h > 
                 
pid_t fork(void);   

 The  fork()  fails if the system does not have the resources to create another process. If there is a limit to 
the number of child processes the parent can spawn or the number of systemwide executing processes 
and that limit has been exceeded, the  fork()  fails. In that case,  errno  is set to indicate the error.  

  Using the exec() Family of System Calls 
 The  exec  family of functions replaces the calling process image with a new process image. The  fork()  
call creates a new process that is a duplication of the parent process, whereas the  exec  function replaces 
the duplicate process image with a new one. The new process image is a regular executable file and is 
immediately executed. The executable can be specified as a path or a filename. These functions can pass 
command - line arguments to the new process. Environment variables can also be specified. There is no 
return value if the function is not successful, because the process image that contained the call to the 
 exec  is overwritten. If the function is unsuccessful,  - 1 is returned to the calling process. 

 All of the  exec()  functions can fail under these conditions: 

   Permissions are denied.   

  Search permission is denied for the executable � s file directory.  

  Execution permission is denied for the executable file.  

     Files do not exist.   

  Executable file does not exist.  

  Directory does not exist.    

   File is not executable.   

  File is not executable because it is open for writing by another process.  

  File is not an executable file.    
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   Problems with symbolic links.   

  Loop exists when symbolic links are encountered while resolving the pathname to the 
executable.  

  Symbolic links cause the pathname to the executable to be too long.

       The  exec  functions are used with the  fork() . The  fork()  creates and initializes the child process with 
the duplicate of the parent. The child process then replaces its process image by calling an  exec() . 
Example  5 - 3  shows an example of the  fork - exec  usage.

   Example 5 - 3   

// Example 5-3 Using the fork-exec system calls.
                 
//...
RtValue = fork();
if(RtValue == 0){
   execl(�/home/user/direct�,�direct�,�.�);
}   

 In Example  5 - 3 , the  fork()  function is called and the return value is stored in  RtValue . If  RtValue  is 0, 
then it is the child process. The  execl()  function is called. The first parameter is the path to the 
executable module, the second parameter is the execution statement, and the third parameter is the 
argument.  direct  is a utility that lists all the directories and subdirectories from a given directory, 
which, in this case, is the current directory. There are six versions of the  exec  functions, each having 
different calling conventions and uses; those are discussed in the next sections. 

  The execl() Functions 
 The  execl() ,  execle() , and  execlp()  functions pass the command - line arguments as a list. The 
number of command - line arguments should be known at compile time in order for these functions 
to be useful.   

   int execl(const char *path,const char *arg0,.../*,(char *)0 */);  

  The  path  parameter is the pathname to the program executable. It can be specified as an 
absolute pathname or a relative pathname from the current directory. The next arguments are 
the list of command - line arguments, from  arg0  to  argn . There can be  n  number of arguments. 
The list is to be followed by a NULL pointer.  

   int execle(const char *path,const char *arg0,.../*,(char *)0 *, char *const 
envp[]*/);  

  This function is identical to  execl()  except that it has an additional parameter,  envp[] . This 
parameter contains the new environment for the new process.  envp[]  is a pointer to a null - ter-
minated array of null - terminated strings. Each string has the form:   

name=value  

  where  name  is the name of the environment variable, and value is the string to be stored. 
 envp[]  can be assigned in this manner:   

char *const envp[] = {�PATH=/opt/kde5:/sbin�, �HOME=/home�,NULL};  
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   PATH  and  HOME  are the environment variables in this case.  

   int execlp(const char *file,const char *arg0,.../*,(char *)0 */);  

   file  is the name of the program executable. It uses the  PATH  environment variable to locate the 
executables. The remaining arguments are the list of command - line arguments as explained for 
 execl()  function.    

 These are examples of the syntax of the  execl()  functions using these arguments: 

char *const args[] = {�direct�,�.�,NULL};
char *const envp[] = {�files=50�,NULL};
                 
execl(�/home/tracey/direct�,�direct�,�.�,NULL);
execle(�/home/tracey/direct�,�direct�,�.�,NULL,envp);
execlp(�direct�,�direct�,�.�,NULL);  

 Each shows the syntax of how the  execl()  function creates a process that executes the direct program.

  Synopsis  
#include  < unistd.h > 
                 
int execl(const char *path,const char *arg0,.../*,(char *)0 */);
int execle(const char *path,const char *arg0,.../*,
          (char *)0 *,char *const envp[]*/);
int execv(const char *path,char *const arg[]);
int execlp(const char *file,const char *arg0,.../*,(char *)0 */);
int execve(const char *path,char *const arg[],
           char *const envp[]);
int execvp(const char *file,char *const arg[]);    

  The execv() Functions 
 The  execv() ,  execve() , and  execvp()  functions pass the command - line arguments in a vector of 
pointers to null - terminated strings. The number of command - line arguments should be known at 
compile time in order for these functions to be useful.  argv[0]  is usually the execution statement.   

   int execv(const char *path,char *const arg[]);  

  The  path  parameter is the pathname to the program executable. It can be specified as an 
absolute pathname or relative pathname to the current directory. The next argument is the 
null - terminated vector that contains the command - line arguments as null - terminated strings. 
There can be  n  number of arguments. The vector is to be followed by a NULL pointer. 

   arg[]  can be assigned in this manner:   

char *const arg[] = {�traverse�,�.�, � > �,�1000�,NULL};  

�
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  This is an example of a function call:   

execv(�traverse�,arg);  

  In this case, the  traverse  utility lists all files in the current directory larger than 1000 bytes.  

   int execve(const char *path,char *const arg[],char *const envp[]);  

  This function is identical to  execv()  except that it has the additional parameter  envp[]  
described earlier.  

   int execvp(const char *file,char *const arg[]);  

   file  is the name of the program executable. The next argument is the null - terminated vector 
that contains the command - line arguments as null - terminated strings. There can be  n  number of 
arguments. The vector is to be followed by a NULL pointer.    

 These are examples of the syntax of the  execv()  functions using these arguments: 

char *const arg[] = {�traverse�,�.�, � > �,�1000�,NULL};
char *const envp[] = {�files=50�,NULL};
                 
execv(�/home/tracey/traverse�,arg);
execve(�/home/tracey/traverse�,arg,envp);
execvp(�traverse�,arg);  

 Each shows the syntax of how each  execv()  function creates a process that executes the  traverse  
program.  

  Determining the Restrictions of exec() Functions 
 There is a limit on the size that  argv[]  and  envp[]  can be when passed to the  exec()  functions. The 
 sysconf()  can be used to determine the maximum size of the command - line arguments plus the size of 
environment variables for the functions that accept  envp[] , which can be passed to the  exec()  
functions. To return the size,  name  should have the value  _SC_ARG_MAX .

  Synopsis  
#include  < unistd.h > 
                 
long sysconf(int name);   

 Another restriction when you are using  exec()  and the other functions used to create processes is the 
maximum number of simultaneous processes allowed per user id. To return this number,  name  should 
have the value  _SC_CHILD_MAX .    
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  Working with Process Environment 
Variables 

 Environment variables are null - terminated strings that store system - dependent information such as 
paths to directories that contain commands, libraries, functions, and procedures used by a process. They 
can also be used to transmit any useful user - defined information between the parent and the child 
processes. They are a mechanism for providing specific information to a process without having it 
hardcoded in the program code. System environment variables are predefined and common to all shells 
and processes in that system. The variables are initialized by startup files. These are the common system 
variables: 

   $HOME : The absolute pathname of your home directory  

   $PATH : A list of directories to search for commands  

   $MAIL : The absolute pathname of your mailbox  

   $USER : Your user id  

   $SHELL : The absolute pathname of your login shell  

   $TERM : Your terminal type    

 They can be stored in a file or in an environment list. The environment list contains pointers to null -
 terminated strings. The variable: 

extern char **environ  

 points to the environment list when the process begins to execute. These strings have the form: 

name=value  

 as explained earlier. Processes initialized with the functions  execl()  ,  execlp()  ,  execv()  , and 
 execvp()   inherit the environment of the parent process. Processes initialized with the functions 
 execve()   and  execle()   set the environment for the new process. 

 There are functions and utilities that can be called to examine, add, or modify environment variables. 
 getenv()   is used to determine whether a specific variable has been set. The parameter name is the 
environment variable in question. The function returns NULL if the specified variable has not been set. 
If the variable has been set, the function returns a pointer to a string containing the value.

  Synopsis  
#include  < stdlib.h > 
                 
char *getenv(const char *name);
int setenv(const char *name, const char *value, int overwrite);
void unsetenv(const char *name);   
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 For example: 

string Path;
                 
Path = getenv(•PATHŽ);  

 the string  Path   is assigned the value contained in the predefined environment  PATH . 

  setenv()  is used to change or add an environment variable. The parameter  name  contains the name 
of the environment variable added with the value stored in  value  . If the  name  variable already exists, 
then the value is changed to  value   if the  overwrite   parameter is non - zero. If  overwrite   is 0, the 
content of the specified environment variable is not modified.  setenv()   returns 0 if it is successful 
and  - 1 if it is unsuccessful. The  unsetenv()   removes the environment variable specified by  name .  

  Using system() to Spawn Processes 
  system()   is another function that is used to execute a command or executable program.  system()   
causes the execution of  fork()  ,  exec()  , and a shell. The  system()   function executes a  fork()  , and the 
child process calls an  exec()   with a shell that executes the given command or program.

  Synopsis  
#include  < stdlib.h > 
                 
int system(const char *string);   

 The  string   parameter can be a system command or the name of an executable file. If successful, the 
function returns the termination status of the command or return value (if any) of the program. Errors 
can happen at several levels; the  fork()   or  exec()   may fail, or the shell may not be able to execute the 
command or program. 

 The function returns a value to the parent process. The function returns 127 if the  exec()   fails and  - 1 if 
some other error occurs. The return code of the command is returned if the function succeeds. This 
function does not affect the wait status of any of the child processes.  

  Killing a Process 
 When a process is terminated, the PCB is erased, and the address space and resources used by the 
terminated process are deallocated. An exit code is placed in its entry in the main process table. The 
entry is removed once the parent has accepted the exit code. The termination of the process can occur 
under several conditions: 

  All instructions have executed. The process makes an explicit return or makes a system call that 
terminates the process. The child processes may automatically terminate when the parent has 
terminated.  

  The parent sends a signal to terminate its child processes.    
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 Abnormal termination of a process can occur when the process itself does something that it shouldn ’ t: 

  The process requires more memory than the system can provide it.  

  The process attempts to access resources it is not allowed to access. The process attempts to 
perform an invalid instruction or a prohibited computation.    

 The termination of a process can also be initiated by a user when the process is interactive. 

 The parent process is responsible for the termination/deallocation of its children. The parent process 
should wait until all its child processes have terminated. When a parent process retrieves a child 
process ’ s exit code, the child process exits the system normally. The process is in a zombied state until 
the parent accepts the signal. If the parent never accepts the signal because it has already terminated and 
exited the system or because it is not waiting for the child process, the child remains in the zombied state 
until the  init   process (the original system process) accepts its exit code. Many zombied processes can 
negatively affect the performance of the system. 

  The exit(), and abort() Calls 
 There are two functions a process can call for self - termination,  exit()   and  abort()  . The  exit()   
function causes a normal termination of the calling process. All open file descriptors associated with the 
process will be closed. The function flushes all open streams that contain unwritten buffered data then 
the open streams are closed. The  status   parameter is the process ’ s exit status. It is returned to the 
waiting parent process that is then restarted. The value of status may be 0,  EXIT_FAILURE  , or  EXIT_
SUCCESS . The 0 value means that the process has terminated successfully. The waiting parent process 
only has access to the lower 8 bits of status. If the parent process is not waiting for the process to 
terminate, the zombied process is adopted by the  init   process. The  abort()   function causes an 
abnormal termination of the calling process. An abnormal termination of the process causes the same 
effect as  fclose()   on all open streams. A waiting parent process receives a signal that the child process 
aborted. A process should only abort when it encounters an error that it cannot deal with 
programmatically.

  Synopsis  
#include  < stdlib.h > 
                 
void exit(int status);
void abort(void);    

  The kill() Function 
 The  kill()   function can be used to cause the termination of another process. The  kill()   function 
sends a signal to the process or processes specified or indicated by the parameter  pid  . The parameter 
 sig   is the signal to be sent to the specified process. The signals are listed in the header   < signal.h > .   
To kill a process,  sig   has the value  SIGKILL  . The calling process must have the appropriate privileges to 
send a signal to the process, or it has to have a real or an effective user id that matches the real or saved 
 set - user - ID   of the process that receives the signal. The calling process may have permission to send 
only certain signals to processes and not others. If the function successfully sends the signal, 0 is 
returned to the calling process. If it fails,  � 1 is returned. 
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 The calling process can send the signal to one or several processes under these conditions: 

   pid    >  0: The signal is sent to the process whose PID is equal to the  pid  .  

   pid   = 0: The signal is sent to all the processes whose process group id is the same as the calling 
process.  

   pid   =  � 1: The signal is sent to all processes for which the calling process has permission to send 
that signal.  

   pid    <     � 1: The signal is sent to all processes whose process id group is equal to the absolute 
value of  pid   and for which the calling process has permission to send that signal.  

   Synopsis  
#include  < signal.h > 
                 
int kill(pid_t pid, int sig);     

  Process Resources 
 In order for a process to perform whatever task it is instructed to perform, it may need to write data to a 
file, send data to a printer, or display data to the screen. A process may need input from the user via the 
keyboard or input from a file. Processes can also use other processes such as a subroutine as a resource. 
Subroutines, files, semaphores, mutexes, keyboards, and display screens are all examples of resources 
that can be utilized by a process. A  resource  is anything used by the process at any given time as a source 
of data, as a means to process or compute, or as the means by which the data or information is displayed. 

 For a process to access a resource, it must first make a request to the operating system. If the resource is 
available, the operating system allows the process to use the resource. The process uses the resource then 
releases it so that it will be available to other processes. If the resource is not available, the request is 
denied, and the process must wait. When the resource becomes available, the process is awakened. This 
is the basic format of resource allocation. Figure  5 - 10  shows a resource allocation graph. The resource 
allocation graph shows which processes hold resources and which processes are requesting resources. 
In Figure  5 - 10 , Process B makes a request for resource 2, which is held by Process C. Process C makes a 
request for resource 3, which is held by Process D.   
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 When more than one request to access a resource is granted, the resource is  sharable . This is shown in 
Figure  5 - 10  as well. Process A shares resource 1 with Process D. A resource may allow many processes 
concurrent access or may allow one process only limited time before allowing another process access. 
An example of this type of shared resource is the processor. A process is assigned a processor for a short 
interval and then another process is assigned the processor. When only one request to access a 
resource is granted at a time and that occurs after the resource has been released by another process, 
the resource is  unshared , and the process has  exclusive access  to the resource. In a multiprocessor 
environment, it is important to know whether a shared resource can be accessed simultaneously or only 
by one process at a time, in order to avoid some of the pitfalls inherent in concurrency. 

 Some resources can be changed or modified by a process. Other resources do not allow a process to change 
it. The behavior of shared modifiable or unmodifiable resources is determined by the resource type. 

  Types of Resources 
 There are three basic types of resources: 

  Hardware  

  Data  

  Software    

  Hardware resources  are physical devices connected to the computer. Examples of hardware resources are 
processors, main memory, and all other I/O devices including printers; hard disk, tape, and zip drives; 
monitors; keyboards; sound, network, and graphic cards; and modems. All these devices can be shared 
by several processes. 

 Some hardware resources are preempted to allow different processes access. For example, a processor is 
preempted to allow different processes time to run. RAM is another example of a shared preemptible 
resource. When a process is not in use, some of the physical page frames it occupies may be swapped out 
to secondary storage in order for another process to be swapped in to occupy those now available page 
frames. A range of memory can be occupied only by the page frames of one process at any given time. 
An example of a nonpreemptible shared resource is a printer. When a printer is shared, the jobs sent to 
the printer by each process are stored in a queue. Each job is printed to completion before another job 
starts. The printer is not preempted by any waiting printer jobs unless the current job is canceled. 

  Data resources  such as objects; system data such as environment variables, files, and handles; globally 
defined variables such as semaphores; and mutexes are all resources shared and modified by processes. 
Regular files and files associated with physical devices such as the printer can be opened, restricting the 
type of access processes has to that file. Processes may be granted only read or write access, or read/
write access. For processes with parent - child relationships, the child process inherits the parent process ’ s 
resources and access rights to those resources existing at the time of the child ’ s creation. The child 
process can advance the file pointer or close, modify, or overwrite the contents of a file opened by the 
parent. Shared memory and files with write permission require their access to be synchronized. Shared 
data such as semaphores or mutexes can be used to synchronize access to other shared data resources. 

  Shared libraries  are examples of  software resources . Shared libraries provide a common set of services or 
functions to processes. Processes can also share applications, programs, and utilities. In such a case, only one 
copy of the program(s) code is brought into memory. However, there are separate copies of the data, one for 
each user (process). Program code that is not changed (also called  reentrant ) can be accessed by several 
processes simultaneously.  
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   POSIX  Functions to Set Resource Limits 
 POSIX defines functions that restrict a process ’ s ability to use certain resources. The operating system 
sets limitations on a process ’ s ability to utilize system resources. These resource limits affect the 
following: 

  Size of the process ’ s stack  

  Size of file and core file creation  

  Amount of CPU usage (size of time slice)  

  Amount of memory usage  

  Number of open file descriptors    

 The operating system sets a hard limit on resource usage by a process. The process can set or change the 
soft limit of its resources. Its value should not exceed the hard limit set by the operating system. A 
process can lower its hard limit. This value should be greater than or equal to the soft limit. When 
a process lowers its hard limit, it is irreversible. Only processes with special privileges can raise their 
hard limit.

  Synopsis  
#include  < sys/resource.h > 
                 
int setrlimit(int resource, const struct rlimit *rlp);
int getrlimit(int resource, struct rlimit *rlp);
int getrusage(int who, struct rusage *r_usage);   

 The  setrlimit()   function is used to set limits on the consumption of specified resources. This function 
can set both hard and soft limits. The parameter  resource   represents the resource type. Table  5 - 7  lists 
the values for  resource   with a brief description. The soft and hard limits of the specified resource are 
represented by the  rlp   paramater. The  rlp   parameter points to a  struct      rlimit   that contains two 
objects of type  rlim_t  : 

struct rlimit
{
    rlim_t rlim_cur;
    rlim_t rlim_max;
}  

  rlim_t   is an unsigned integer type.  rlim_cur   contains the current or soft limit.  rlim_max   contains the 
maximum or hard limit.  rlim_cur   and  rlim_max   can be assigned any value. They can also be assigned 
these symbolic constants defined in the header   < sys/resource.h >  : 

   RLIM_INFINITY  : Indicates no limit  

   RLIM_SAVED_MAX : Indicates an unrepresentable saved hard limit  

   RLIM_SAVED_CUR : Indicates an unrepresentable saved soft limit    

 The soft or hard limit can be set to  RLIM_INFINITY  , which means that the resource is unlimited.   
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Table 5-7

Resource Definitions Descriptions

RLIMIT_CORE Maximum size of a core file in bytes that may be created by a process

RLIMIT_CPU Maximum amount of CPU time in seconds that may be used by a process

RLIMIT_DATA Maximum size of a process’s data segment in bytes

RLIMIT_FSIZE Maximum size of a file in bytes that may be created by a process

RLIMIT_NOFILE A number one greater than the maximum value that the system may 
assign to newly created file descriptor

RLIMIT_STACK Maximum size of a process’s stack in bytes

RLIMIT_AS Maximum size of a process’s total available memory in bytes

 The  getrlimit()   returns the soft and hard limit of the specified resource in the  rlp   object. Both the 
 getrlimit()   and  setrlimit()   functions return 0 if successful and  - 1 if unsuccessful. Example  5 - 4  
contains an example of a process setting the soft limit for file size in bytes.

   Example 5 - 4   

//Example 5-4 Using setrlimit() to set the soft limit for file size.
                 
#include  < sys/resource.h > 
                 
//...
struct rlimit R_limit;
struct rlimit R_limit_values;
                 
//...
                 
R_limit.rlim_cur = 2000;
R_limit.rlim_max = RLIM_SAVED_MAX;
setrlimit(RLIMIT_FSIZE, & R_limit);
getrlimit(RLIMIT_FSIZE, & R_limit_values);
cout  <  <  •file size soft limit: •  <  <  R_limit_values.rlim_cur  <  <  endl;
                 
//...   

 In Example  5 - 4 , the file size soft limit is set to 2000 bytes, and the hard limit is set to hard limit 
maximum.  R_limit   and  RLIMIT_FSIZE   are passed to  setrlimit()  .  getrlimit()   is passed  
RLIMIT_FSIZE   and  R_limit_values  . The soft value is sent to  cout  . 

  getrusage()   returns information about the measures of resources used by the calling process. It also 
returns information about the terminated child process the calling process is waiting for. The parameter 
 who  can have these values: 

   RUSAGE_SELF   

   RUSAGE_CHILDREN     
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 If the value for  who  is  RUSAGE_SELF , then the information returned pertains to the calling process. If the 
value for  who  is  RUSAGE_CHILDREN , then the information returned is pertaining to the calling process ’ s 
children. If the calling process did not wait for its children, then the information pertaining to 
the children processes is discarded. The information is returned in  r_usage  .  r_usage   points to a  struct    
  rusage   that contains information listed and described in Table  5 - 8 . If the function is successful, it returns 
0; if unsuccessful, it returns �  1.     

Table 5-8

struct rusage  Attributes Description

struct timeval ru_utime 
struct timeval ru_sutime

User time used
System time used

long ru_maxrss
long ru_maxixrss
long ru_maxidrss
long ru_maxisrss

Maximum resident set size
Shared memory size
Unshared data size
Unshared stack size

long ru_minflt
long ru_majflt

Number of page claims
Number of page faults

long ru_nswap Number of page swaps

long ru_inblock
long ru_oublock

Block input operations
Block output operations

long ru_msgsnd
long ru_msgrcv

Number of messages sent
Number of messages received

long ru_nsignals Number of signals received

long ru_nvcsw
long ru_nivcsw

Number of voluntary context switches
Number of involuntary context 
switches

  What Are Asynchronous and 
Synchronous Processes 

  Asynchronous  processes execute independent of each other. Process A runs until completion without any 
regard to process B. Asynchronous processes may or may not have a parent - child relationship. If process 
A creates process B, they can both execute independently, but at some point the parent retrieves the exit 
status of the child. If the processes do not have a parent - child relationship, they may share the same 
parent. 

 Asynchronous processes may execute serially or simultaneously or their execution may overlap. These 
scenarios are depicted in Figure  5 - 11 . 

 In Case 1, process A runs until completion, then process B runs until completion, and then process C 
runs until completion. This is serial execution of these processes. 
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 Case 2 depicts simultaneous execution of processes. Process A and B are active processes. While process 
A is running, process B is sleeping. At some point both processes are sleeping. Process B awakens before 
process A. Then process A awakens, and now both processes are running at the same time. This shows 
that asynchronous processes may execute simultaneously only during certain intervals of their 
execution. 

 In Case 3, the execution of process A and the execution of process B overlap.   
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Figure 5-11
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 Asynchronous processes may share resources like a file or memory. This may or may not require 
synchronization or cooperation of the use of the resource. If the processes are executing serially (Case 1), 
then they will not require any synchronization. For example, all three processes, A, B, and C, may share a 
global variable. Process A writes to the variable before it terminates. Then, when process B runs, it reads 
the data stored in the variable, and before it terminates it writes to the variable. When Process C runs, it 
reads data from the variable. But in Case 2 and 3, the processes may attempt to modify the variable at the 
same time, thus requiring synchronization of its use. 

 For our purposes, we define  synchronous  processes as processes with interleaved execution; one process 
suspends its execution until another process finishes. For example, process A, the parent process, 
executes and creates process B, the child process. Process A suspends its execution until process B runs to 
completion. When process B terminates, its exit code is placed in the process table. Process A is informed 
process B has terminated. Process A can resume additional processing and then terminate, or it can 
immediately terminate. Process A and process B are synchronous processes. Figure  5 - 11  contrasts 
synchronous and asynchronous execution of processes A and B. 

  Synchronous vs. Asynchronous Processes for fork(), 
posix_spawn(), system(), and exec() 

 Processes created by the  fork()  ,  fork - exec()  , and p osix_spawn()   functions create 
asynchronous processes. When you are using  fork()  , the parent process image is duplicated. Once 
the child process has been created, the function returns to the parent both the child ’ s PID and a return 
value of 0, indicating process creation was successful. The parent does not suspend execution; both 
processes continue to execute independently from the statement immediately preceding the  fork()  . 

 Child processes created using the  fork - exec()   combination initialize the child ’ s process image with a 
new process image. The  exec()   functions do not return to the parent process unless the initialization 
was not successful. 

 The  posix_spawn()   functions create the child process image and initialize it within one function call. 
The PID is returned to the  posix_spawn()   as well as a return value, indicating if the process was 
spawned successfully. After  posix_spawn()   returns, both processes are executing at the same time. 

 Processes created by the  system()   function create synchronous processes. A shell is created that 
executes the system command or executable file. The parent process is suspended until the child process 
terminates and the  system()   call returns.   

  The wait() Function Call 
 Asynchronous processes can suspend execution until a child process terminates by executing  wait()   
system call. After the child process terminates, a waiting parent process collects the child ’ s exit status 
that prevents zombied processes. The  wait()   function obtains the exit status from the process table. 
The status parameter points to a location that contains the exit status of the child process. If the parent 
process has more than one child process and several of them have terminated, the  wait()   function 
retrieves the exit status for only one child process from the process table. If the status information is 
available before the execution of the  wait()   function, the function returns immediately. If the parent 
process does not have any children, the function returns with an error code. The  wait()   function can 
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