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Introduction

As the title may suggest, this book is about combinatorics on words, au-

tomata and formal language theory, as well as number theory. This col-

laborative work gives a glimpse of the active community working in these

interconnected and even intertwined areas. It presents several important

tools and concepts usually encountered in the literature and it reveals some

of the exciting and non-trivial relationships existing between the considered

fields of research. This book is mainly intended for graduate students or re-

search mathematicians and computer scientists interested in combinatorics

on words, theory of computation, number theory, dynamical systems, er-

godic theory, fractals, tilings, and stringology. We hope that some of the

chapters can serve as useful material for lecturing at a master level.

The outline of this project has germinated after a very successful interna-

tional eponymous school organised at the University of Liège (Belgium) in

2006 and supported by the European Union with the help of the European

Mathematical Society (EMS). Parts of a preliminary version of this book

were used as lecture notes for the second edition of the school organised

in June 2009 and mainly supported by the European Science Foundation

(ESF) through the AutoMathA programme. For both events, we acknowl-

edge also financial support from the University of Liège and the Belgian

funds for scientific research (FNRS).

We have selected ten topics which are directed towards the fundamen-

tal three directions of this project (namely, combinatorics, automata and

number theory) and they naturally extend to dynamical systems and er-

godic theory (see Chapters 6 and 7), but also to fractals and tilings (see

Chapter 5) and spectral properties of matrices (see Chapter 11). Indeed,

as it will be shown in particular in Chapter 7 there exist tight and fruitful

links between properties sought for in dynamical systems and combinato-

rial properties of the corresponding words and languages. On the other

7



8 Introduction

hand, linear algebra and extremal matrix products are important tools in

the framework of this book: some matrices are canonically associated with

morphisms and graphs and a notion like joint spectral radius introduced in

(Rota and Strang 1960) has therefore applications in automata theory or

combinatorics on words.

Each chapter is intended to be self-contained and relies mostly on the

introductory Chapter 1 presenting some preliminaries and general notions.

Some of the major links existing between the chapters are given in the figure

below.
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Fifteen authors were collaborating on this volume. Most of them kindly

served as lecturers for the CANT schools.

Let us succinctly sketch the general landscape without any attempt of

being exhaustive. Short abstracts of each chapter are given below.

Combinatorics on words is a quite recent topics in (discrete) math-

ematics, and in the category of “Concrete Mathematics” according to the

terminology introduced by (Graham, Knuth, and Patashnik 1989). It deals

with problems that can be stated in a non-commutative monoid such as es-

timates on the factor complexity function for infinite words, construction

and properties of infinite words, the study of unavoidable regularities or

patterns, substitutive words, etc. In the spirit of Lothaire’s seminal book

series, see (Lothaire 1983), (Lothaire 2002) and (Lothaire 2005), but with

a different focus put on interactions between fields of research, we will deal

in this book with the complexity function counting factors occurring in

an infinite word, properties and generalisations of automatic sequences in

the sense of (Allouche and Shallit 2003) and also the equality problem for

substitutive (or also called morphic) words, see Chapters 3, 4, and 10. Mo-

tivations to study words and their properties are coming, for instance, from

the coding of orbits and trajectories by words. This constitutes the basis of

symbolic dynamical systems (Lind and Marcus 1995). This explains why
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dynamical systems enter the picture, mainly in Chapter 6 and 7, and are

at the origin of the introduction of the fractals studied in Chapter 5. A

historical example is the study by M. Morse of recurrent geodesics on a

surface with negative curvature (Morse 1921). As another example, simi-

lar ideas are found in connection with the word problem in group theory

(Epstein, Cannon, Holt, et al. 1992). Moreover the use of combinatorics is

sought in the analysis of algorithms, initiated by D. E. Knuth, and which

greatly relies on number theory, asymptotic methods and computer algebra

(Lothaire 2005), (Greene and Knuth 1990), (Knuth 2000). Reader inter-

ested in asymptotics methods and limiting properties of digital functions

should in particular read Chapter 9.

Keep in mind that both combinatorics on words and theory of formal

languages have important applications and interactions in computer science

(Perrin and Pin 2003) and physics. To cite just a few: study and models

of quasi-crystals, aperiodic order and quasiperiodic tilings, bio-informatics

and DNA analysis, theory of parsing, algorithmic verification of large sys-

tems, coding theory, discrete geometry and more precisely discretisation

for computer graphics on a raster display, etc. This shows that algorithmic

issues have also an important role to play.

Two chapters of this book, Chapters 2 and 3, are dealing with numer-

ation systems. Such systems provide a main bridge between number

theory on the one hand, and words combinatorics and formal language the-

ory on the other hand. Indeed any integer can be represented in a given

numeration system, like the classical integer base q numeration system, as

a finite word over a finite alphabet of digits {0, . . . , q − 1}. This simple

observation leads to the study of the relationships that can exist between

the arithmetical properties of the integers and the syntactical properties of

the corresponding representations. One of the deepest and most beauti-

ful results in this direction is given by the celebrated theorem of Cobham

(Cobham 1969) showing that the recognisability of a set of integers depends

on the considered numeration system. This result can therefore be consid-

ered as one of the starting point of many investigations, for the last thirty

years, about recognisable sets of integers and about non-standard or exotic

numeration systems. Surprisingly, a recent extension of Cobham’s theorem

to the complex numbers leads to the famous Four Exponentials Conjecture

(Hansel and Safer 2003). This is just one example of the fruitful relation-

ship between formal language theory (including the theory of automata)

and number theory. Many such examples will be presented here.

Numeration systems are not restricted to the representation of integers.

They can also be used to represent real numbers with infinite words. One
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can think of continued fractions, integer or rational base representations,

beta-expansions, etc. Again it is remarkable that some syntactical proper-

ties of the representations of reals may reflect number-theoretical properties,

like transcendence, of the represented numbers. These questions are also

treated in this book, see in particular Chapter 2 and Chapter 8. About

Diophantine analysis or approximations of real numbers by algebraic num-

bers, striking developments through a fruitful interplay between Diophan-

tine approximation and combinatorics on words can be observed, see again

Chapter 8. Analogously, a rich source of challenging problems in analytic

number theory comes from the study of digital functions, i.e., functions

defined in a way that depends on the digits in some numeration system.

They are the object of Chapter 9.

The study of simple algorithmic constructions and transformations of

infinite words plays here an important role. We focus in particular on the

notion of morphic words, also called substitutive words. They are

obtained iteratively by replacing letters with finite words. These words,

as well as their associated symbolic dynamical systems, present a very rich

behaviour. They occur in most of the chapters, see in particular Chapters 3,

4, 5, 6, 8 and 10. In the case where we replace letters with words of the same

length, we obtain so-called automatic sequences. Several variations around

the notion of morphic words are presented, as D0L systems (see Chapter 10),

or else as adic words and transformations, and linearly recurrent subshifts.

They occur in particular in Chapter 6 and Chapter 7. Note that most

of the symbolic dynamical systems considered are of zero entropy, such as

substitutive dynamical systems, odometers (see Chapter 6 and 9) or linearly

recurrent systems (see Chapter 6).

Graphs and automata appear to be a very natural and powerful tool in

this context. This is illustrated e.g. in Chapter 2 with special focus on

operations performed on expansions of numbers realised by automata or

transducers, or in Chapter 5 which is devoted to tilings by fractals whose

boundary is described in terms of graphs. Graphs associated with substi-

tutions appear ubiquitously, for instance, under the form of prefix-suffix

graphs, of Rauzy graphs of words, or of the automata generating automatic

sequences. Incidence matrices of graphs play here also an important role,

hence the recurrence of notions like the spectral radius and its generalisa-

tions (see Chapter 11), or the importance of Perron–Frobenius’ Theorem.

We are very pleased that Cambridge University Press proposed to con-

sider this book, as the Lothaire’s books, as part of the Encyclopedia of

Mathematics and its Applications series.
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Let us present the different contributions for this book.

Chapter 2 by Ch. Frougny and J. Sakarovitch

Number representation and finite automata

In this chapter, numbers are represented by their expansion in a base, or

more generally, with respect to a basis, hence by words (finite or infinite)

over an alphabet of digits.

Is the set of expansions for all integers or all reals (within an interval)

recognised by a finite automaton? Which operations on numbers translate

into functions on number expansions that are realised by finite transduc-

ers? These are some of the questions that are treated in this chapter.

The classical representation in an integer base is first considered, then the

representation in a real base and in some associated basis. Finally, rep-

resentations in canonical number systems and in rational bases are briefly

studied.

Chapter 3 by P. Lecomte and M. Rigo

Abstract numeration systems

The motivation for the introduction of abstract numeration systems stems

from the celebrated theorem of Cobham dating back to 1969 about the so-

called recognisable sets of integers in any integer base numeration system.

An abstract numeration system is simply an infinite genealogically ordered

(regular) language. In particular, this notion extends the usual integer base

numeration systems as well as more elaborated numeration systems such as

those based on a Pisot number. In this general setting, we study in details

recognisable sets of integers, i.e., the corresponding representations are ac-

cepted by a finite automaton. The main theme is the link existing between

the arithmetic properties of integers and the syntactical properties of the

corresponding representations in a given numeration system. Relationship

with automatic sequences and substitutive words is also investigated, pro-

viding an analogue to another famous result of Cobham from 1972 about

k-automatic sequences. Finally, the chapter ends with the representation

of real numbers in an abstract numeration system.

Chapter 4 by J. Cassaigne and F. Nicolas

Factor complexity

The factor complexity function p(n) of an infinite word is studied thor-

oughly. Tools such as special factors and Rauzy graphs are introduced,
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then applied to several problems, including practical computation of the

factor complexity of various kinds of words, or the construction of words

having a complexity asymptotically equivalent to a specified function.

This chapter includes a complete proof of Pansiot’s characterisation of the

complexity function of purely morphic words, and a proof of a conjecture

of Heinis on the limit p(n)/n.

The authors would like to thank Jean-Paul Allouche for his bibliographic

help, Juhani Karhumäki for his kind hospitality during the redaction of

this chapter, and Christian Mauduit for his participation in the proof of

Theorem 4.7.15. F. Nicolas was supported by the Academy of Finland

under the grant 7523004 (Algorithmic Data Analysis).

Chapter 5 by V. Berthé, A. Siegel and J. Thuswaldner

Substitutions, Rauzy fractals, and tilings

This chapter focuses on a multiple tiling associated with a primitive sub-

stitution σ. We restrict to the case where the inflation factor of the substi-

tution σ is a unit Pisot number. This multiple tiling is composed of tiles

which are given by the unique solution of a set equation expressed in terms

of a graph associated with the substitution σ: these tiles are attractors

of a graph-directed iterated function system (GIFS). Each of these tiles is

compact, it is the closure of its interior, it has a non-zero measure and it

has a fractal boundary that is also a solution of a graph-directed iterated

function system defined by the substitution σ. These tiles are called central

tiles or Rauzy fractals, according to G. Rauzy who introduced them. The

aim of this chapter is to list several tiling conditions, relying on the use of

various graphs associated with σ.

The authors would like to thank W. Steiner for his efficient help for

drawing pictures of fractals, as well as J.-Y. Lee and B. Solomyak for their

precious comments on Section 5.7.

Chapter 6 by F. Durand

Combinatorics on Bratteli diagrams and dynamical systems

The aim of this chapter is to show how Bratteli diagrams are used to study

topological dynamical systems. Bratteli diagrams are infinite graphs that

provide a very efficient encoding of the dynamics that transform some dy-

namical properties into combinatorial properties on these graphs. We illus-

trate their wide range of applications through classical notions: invariant

measures, entropy, expansivity, representation theorems, strong orbit equiv-

alence, eigenvalues of the Koopman operator.
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Chapter 7 by S. Ferenczi and T. Monteil

Infinite words with uniform frequencies, and invariant measures

For infinite words, we study the properties of uniform recurrence, which

translates the dynamical property of minimality, and of uniform frequencies,

which corresponds to unique ergodicity; more generally, we look at the

set of invariant measures of the associated dynamical system. We present

some achievements of word combinatorics, initiated by M. Boshernitzan,

which allow us to deduce information on these invariant measures from

simple combinatorial properties of the words. Then we review some known

examples of words with uniform frequencies, and give important examples

which do not have uniform frequencies. We finish by hinting how these basic

notions have given birth to very deep problems and high achievements in

dynamical systems.

The first author wishes to thank the MSRI for its hospitality during the

redaction of this chapter. The second author wishes to thank the Poncelet

Laboratory and the Asmus Family for their hospitality during the redaction

of this chapter.

Chapter 8 by B. Adamczewski and Y. Bugeaud

Transcendence and Diophantine approximation

Finite and infinite words occur naturally in Diophantine approximation

when we consider the expansion of a real number in an integer base or its

continued fraction expansion. The aim of this chapter is to present several

number-theoretical problems that reveal a fruitful interplay between com-

binatorics on words and Diophantine approximation. For example, if the

decimal expansion of a real number viewed as an infinite word on the al-

phabet {0, 1, . . . , 9} begins with arbitrarily large squares, then this number

must be either rational, or transcendental.

Chapter 9 by M. Drmota and P. J. Grabner

Analysis of digital fuctions and applications

The aim of this chapter is to study asymptotic properties of digital func-

tions (like the sum-of-digits function) from different points of view and to

survey several techniques that can be applied to problems of this kind.

We first focus on properties of average values where we explain periodicity

phenomena in the “constant term” or the main term of the corresponding

asymptotic expansions. We compare the classical approach by Delange, a

Dirichlet series method, and a measure-theoretic method. Secondly, we dis-

cuss distributional properties like Erdős-Wintner-type theorems and central
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limit theorems that work for very general q-additive functions and even if

these functions are only considered for polynomial subsequences. These

general results are complemented by very precise distributional results for

completely q-additive functions which are based on a generating function

approach. A final section discusses some further problems like the recent so-

lution of the Gelfond problems on the sum-of-digits function and dynamical

aspects of odometers.

The authors are supported by the Austrian Science Foundation FWF,

projects S9604 and S9605, parts of the Austrian National Research Network

“Analytic Combinatorics and Probabilistic Number Theory”.

Chapter 10 by J. Honkala

The equality problem for purely substitutive words

We prove that the equality problem for purely substitutive words is decid-

able. This problem is also known as the D0L ω-equivalence problem. It

was first solved by Culik and Harju. Our presentation follows a simpler

approach in which elementary morphisms play an important role. We will

also consider the equality problem for sets of integers recognised by finite

automata in various ways.

Chapter 11 by V. D. Blondel and R. M. Jungers

Extremal matrix products and the finiteness property

We introduce and study questions related to long products of matrices. In

particular, we define the joint spectral radius and the joint spectral subra-

dius which characterise, respectively, the largest and smallest asymptotic

rate of growth that can be obtained by forming long products of matrices.

Such long products of matrices occur naturally in automata theory due to

the possible representation of automata by sets of adjacency matrices.

Joint spectral quantities were initially used in the context of control the-

ory and numerical analysis but have since then found applications in many

other areas, including combinatorics and number theory. In the chapter we

describe some of their fundamental properties, results on their computa-

tional complexity, various approximation algorithms, and three particular

applications related to words and languages.
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Preliminaries

V. Berthé

LIRMM - Université Montpelier II - CNRS UMR 5506
161 rue Ada, F-34392 Montpellier cedex 5, France

M. Rigo

Université de Liège, Institut de Mathématiques,
Grande Traverse 12 (B 37), B-4000 Liège, Belgium.

The aim of this chapter is to introduce basic objects that are encountered

in the different parts of this book. In the first section, we start with a few

conventions. Section 1.2 presents finite and infinite words and fundamental

operations that can be applied to them. In particular important concepts

like eventually periodic words, substitutive words or factor complexity func-

tion are introduced (more material is given in Chapter 4). Sets of words

are languages. They are presented in Section 1.3 together with regular

languages, finite automata and transducers (more material is presented in

Section 2.6). Section 1.4 introduces some matrices naturally associated with

automata or morphisms. Section 1.5 presents basic results on numeration

systems that will be developed in Chapter 2. Finally, Section 1.6 introduces

concepts from symbolic dynamics.

1.1 Conventions

Let us start with some basic notation used along this book. We assume

the reader familiar with usual basic set operations like union, intersection

or set difference: ∪, ∩ or \. Sets of numbers are of particular interest. The

set of non-negative integers (respectively integers, rational numbers, real

numbers, complex numbers) is N (respectively Z, Q, R, C). Let a be a real

number and K = N, Z, Q or R. We set

K≥a := K ∩ [a,+∞), K>a := K ∩ (a,+∞) ,

K≤a := K ∩ (−∞, a], K<a := K ∩ (−∞, a) .

For instance, N>0 can indifferently be written N \ {0} or N≥1. Let i, j ∈ Z
with i ≤ j. We use the notation [[i, j]] for the set of integers {i, i+1, . . . , j}.

Let X,Y be two sets. The notation X ⊆ Y stands for the fact that every

16
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element of X is an element of Y , whereas X ⊂ Y stands for the strict

inclusion, i.e., X ⊆ Y and X 6= Y . Let XY denote the set of all mappings

from Y to X . Therefore the set of sequences indexed by N (respectively by

Z) of elements in X is denoted by XN (respectively by XZ). As a particular

case, 2X is the power set of X , i.e., the set of all subsets of X . Indeed, 2

can be identified with {0, 1} and maps from X to {0, 1} are in one-to-one

correspondence with subsets of X . In particular, if X is finite of cardinality

CardX = n, then 2X contains 2n sets. The Cartesian product of X and

Y is denoted by X × Y . It is the set of ordered pairs (x, y) for all x ∈ X
and y ∈ Y . For a subset X of a topological space, int(X) stands for the

interior of X , X for the closure of X , and ∂X for its boundary, that is,

∂X = X \ int(X).

The floor of a real number x is bxc = sup{z ∈ Z | z ≤ x}, whereas

{x} = x−bxc stands for the fractional part of x. For x = (x1, . . . , xn) ∈ Rn,

we will use the following set of notation for the most usual norms

||x||1 :=

n∑

i=1

|xi|, ||x||∞ = max
i
|xi|, ||x||2 =

√√√√
n∑

i=1

x2
i ,

and will denote the corresponding open ball with radius R and center x as

B1(x, R), B∞(x, R), B2(x, R), respectively. For more on vector norms, see

Section 4.7.2.2.

It is a good opportunity to recall here notation about asymptotics. Let

f, g : R → R be two functions. The definitions given below can also be

applied to functions defined on another domain like R>a, N or Z. We

assume implicitly that the following notions are defined for x → +∞. We

write f ∈ O(g), if there exist two constants x0 and C > 0 such that, for all

x ≥ x0, |f(x)| ≤ C|g(x)|. We also write f � g or g � f , or else g ∈ Ω(f).

Note that we can write either f ∈ O(g) or f = O(g). Be aware that in the

literature, authors give sometime different meanings to the notation Ω(f).

Here we consider a bound, for all large enough x, but there exist variants

where the bound holds only for an increasing sequence (xn)n≥0 of reals,

i.e., lim supx→+∞ |g(x)|/|f(x)| > 0.

If g belongs to O(f) ∩ Ω(f), i.e., there exist constants x0, C1, C2 with

C1, C2 > 0 such that, for all x ≥ x0, C1|f(x)| ≤ |g(x)| ≤ C2|f(x)|, then we

write g ∈ Θ(f). As an example, the function x2 + sin 6x is in Θ(x2) and

x2| sin(4x)| is in O(x2) but not in Θ(x2). In Figure 1.1, we have represented

the functions x2 + sin 6x, x2| sin(4x)|, 4x2/5 and 6x2/5.

If limx→+∞
f(x)
g(x) = 0, we write f = o(g). Finally, if limx→+∞

f(x)
g(x) = 1,

we write f ∼ g. For more on asymptotics, see for instance (de Bruijn 1981)

or the first chapter of (Hardy and Wright 1985).
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Fig. 1.1. The functions x2 + sin 6x, x2| sin(4x)|, 4x2/5 and 6x2/5.

Lastly, we will use the notation log = loge for the natural logarithm,

whereas log2 will denote the binary logarithm.

1.2 Words

This section is only intended to give basic definitions of concepts developed

later on. For material not covered in this book, classical textbooks on finite

or infinite words and their properties are (Lothaire 1983), (Lothaire 2002),

(Lothaire 2005). See also the chapter (Choffrut and Karhumäki 1997) or

the tutorial (Berstel and Karhumäki 2003). The first chapters of the books

(Allouche and Shallit 2003) and (Pytheas Fogg 2002) contain also many

references for further developments in combinatorics on words.

1.2.1 Finite words

An alphabet is a finite set of symbols (or letters). Usually, alphabets will be

denoted using Roman upper case letters, like A or B. The most basic and

fundamental objects that we shall deal with are words.

Let A be an alphabet. A finite word over A (to distinguish with the

infinite case that will be considered later on) is a finite sequence of letters

in A. In a formal way, a word of length n ∈ N is a map u from [[0, n − 1]]

to A. Instead of a functional notation, it is convenient to write a word as

u = u0 · · ·un−1 to express u as the concatenation of the letters ui. The
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length of u, that is, the size of its domain, is denoted by |u|. The unique

word of length 0 is the empty word denoted by ε.

In order to endow the set of finite words with a suitable algebraic struc-

ture, we introduce the following definitions.

Definition 1.2.1 Recall that a semigroup is an algebraic structure given

by a set R that is equipped with a product operation from R × R to R

which is associative, i.e., for all a, b, c ∈ R, (a · b) · c = a · (b · c).
Moreover, if this associative product on R possesses a (necessarily unique)

identity element 1R ∈ R, i.e., for all a ∈ R, a · 1R = a = 1R · a, then

this algebraic structure is said to be a monoid. For instance the set Nd,

with d ≥ 1, of d-tuples of non-negative integers with the usual addition

component-wise is a monoid with (0, . . . , 0) as identity element.

Definition 1.2.2 Let (R, ·) and (T, �) be monoids with respectively 1R

and 1T as identity element. A map f : R → T is a monoid morphism (or

homomorphism of monoids) if f(1R) = 1T and for all a, b ∈ R, f(a · b) =

f(a) � f(b).

Let u = u0 · · ·um−1 and v = v0 · · · vn−1 be two words over A. The

concatenation of u and v is the word w = w0 · · ·wm+n−1 defined by wi = ui

if 0 ≤ i < m, and wi = vi−m otherwise. We write u·v or simply uv to express

the concatenation of u and v. Notice that this operation is associative. Let

u be a word and n ∈ N. Naturally, let un denote the concatenation of n

copies of u and we set u0 = ε. A square is a word of the form uu, where

u ∈ A∗.
The set of all (finite) words over A is denoted by A∗. Endowed with

the concatenation of words as product operation, A∗ is a monoid with ε as

identity element. It is the free monoid generated by A (freeness means that

any element in A∗ has a unique factorisation as product of elements in A).

Notice that the length map | · | : (A∗, ·) → (N,+), w 7→ |w| is a morphism

of monoids. Let A+ = A∗ \ {ε} denote the free semigroup generated by A.

Finally, for n ∈ N, An is the set of words of length n over A and A≤n is the

set of words over A of length less or equal to n.

The mirror (sometimes called reversal) of a word u = u0 · · ·um−1 is the

word ũ = um−1 · · ·u0. It can be defined inductively on the length of the

word by ε̃ = ε and ãu = ũa for a ∈ A and u ∈ A∗. Notice that for

u, v ∈ A∗, ũv = ṽũ. A palindrome is a word u such that ũ = u. For

instance, the palindromes of length at most 3 in {0, 1}∗ are

ε, 0, 1, 00, 11, 000, 010, 101, 111.

We end this section about finite words with the notion of code.
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Definition 1.2.3 A subset Y ⊂ A+ is a code if, for all

u1, . . . , um, v1 . . . , vn ∈ Y , the equality u1 · · ·um = v1 · · · vn implies

n = m and ui = vi for i = 1, · · · ,m. A code is said to be a prefix code if

none of its elements is a prefix of another one.

1.2.2 Infinite words

To define infinite words, we consider maps taking values in an alphabet but

defined on an infinite domain. A (one-sided) infinite word over an alphabet

A is a map from the set N of non-negative integers to A. Using the same

convention as for finite words, we write x = x0x1x2 · · · to represent an

infinite word. It is sometimes convenient to use a notation like x = (xn)n≥0.

If the domain is the set Z of integers, then we speak of bi-infinite word (in

the literature, we also find the terminology of two-sided infinite words).

In this latter situation, a convenient notation is to use a decimal point to

determine the position of the image of 0 like · · ·x−2x−1.x0x1x2 · · · .
In what follows if no explicit mention is made then we shall be dealing

with one-sided infinite words and we will omit reference to it.

The set of infinite words over A is denoted by AN. We can define a

concatenation operation from A∗×AN to AN as follows. The concatenation

of the finite word u = u0 · · ·un−1 and the infinite word x = x0x1 · · · is

the infinite word y = y0y1 · · · denoted by ux and defined by yi = ui if

0 ≤ i ≤ n− 1, and yi = xi−n if i ≥ n.

Example 1.2.4 Consider the infinite word x = x0x1x2 · · · where the let-

ters xi ∈ {0, . . . , 9} are given by the digits appearing in the usual decimal

expansion of π − 3,

π − 3 =

+∞∑

i=0

xi 10−i−1 ,

i.e., x = 14159265358979323846264338327950288419 · · · is an infinite word.

Definition 1.2.5 Any subset X of N (respectively Z) gives rise to an in-

finite (respectively bi-infinite) word over {0, 1}, namely its characteristic

word. Let x be this word. It is defined as follows

xn =

{
1, if n ∈ X,
0, otherwise.

It also refers to the indicator function of the set X , denoted by
�

X(n).

Example 1.2.6 Consider the characteristic sequence of the set of prime

numbers x = x0x1 · · · = 0011010100010100010100010000 · · · .
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1.2.3 Factors, topology and orderings

The following notions can be defined for both finite and infinite words. Let

us start with the finite case. Let u = u0 · · ·un−1 be a finite word over A. If

u can be factorised as u = vfw with v, f, w ∈ A∗, we say that f is a factor

of u. If f = ui · · ·ui+|f |−1, then f is said to occur at position i in u. For

convenience, u[i, i+ `− 1] denotes the factor of u of length ` ≥ 1 occurring

at position i. The number of occurrences of f in u is denoted by |u|f . In

particular, if a ∈ A, then |u|a denotes the number of letters a occurring in

u. If u is a finite or infinite word over A, then alph(u) is the set of letters

which occur in u. If u is the empty word, then alph(u) is the empty set.

One has alph(u) ⊆ A.

Assume that A = {a1 < · · · < an} is totally ordered. The map P :

A∗ → Nn, w 7→ t(|w|a1 , . . . , |w|an
) is called the abelianisation map . It is

trivially a morphism of monoids. Notice that in the literature, this map is

also referred to as the Parikh mapping. Note that for a matrix M, tM is

the transpose of M.

If u = fw (respectively u = vf) then f is a prefix (respectively a suffix)

of u. A word u = u0 · · ·un−1 of length n has exactly n + 1 prefixes: ε,

u0, u0u1, . . . , u0 · · ·un−2, u. The same holds for suffixes. A proper prefix

(respectively proper suffix) of u is a prefix (respectively suffix) different

from the full word u. Let us observe that a factor of u is obtained as

the concatenation of consecutive letters occurring in u. By opposition a

scattered subword of u = u0 · · ·un−1 is of the form ui0ui1 · · ·uik
with k < n

and 0 ≤ i1 < i2 < · · · < ik < n.

Example 1.2.7 Let A = {0, 1} be the binary alphabet consisting of letters

0 and 1. The set A∗ contains all the finite words obtained by concatenating

0’s and 1’s. The concatenation of the words u = 1001 and v = 010 is the

word w = uv = 1001010 = w0 · · ·w6. The word v occurs twice in w at

positions 2 and 4. We have w[1, 3] = 001 and the suffix 1010 is a square,

i.e., (10)2. To conclude with the example, |w|0 = |u|0 + |v|0 = 2 + 2 = 4.

The notions of factor, prefix or suffix as well as the according notation

introduced for finite words can be extended to infinite words. Factors and

prefixes are finite words, but a suffix of an infinite word is also infinite.

Let x = x0x1x2 · · · be an infinite word over A. For instance, for ` ≥
0, x[0, ` − 1] = x0 · · ·x`−1 is the prefix of length ` of x. We denote by

x[i, i + ` − 1] = xi · · ·xi+`−1 the factor of length ` ≥ 1 occurring in x at

position i ≥ 0. For n ≥ 0, the infinite word xnxn+1 · · · is a suffix of x. See

the relationship with the notion of shift introduced in Section 1.6.
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Definition 1.2.8 The language of the infinite word x is the set of all its

factors. It is denoted by L(x). The set of factors of length n occurring in x

is denoted by Ln(x).

Definition 1.2.9 An infinite word x is recurrent if all its factors occur

infinitely often in x. It is uniformly recurrent (also called minimal), if it is

recurrent and for every factor u of x, if Tx(u) = {i(u)
1 < i

(u)
2 < i

(u)
3 < · · · } is

the infinite set of positions where u occurs in x, then there exists a constant

Cu such that, for all j ≥ 1,

i
(u)
j+1 − i

(u)
j ≤ Cu.

An infinite set X ⊆ N of integers having such a property, i.e., where the

difference of any two consecutive elements in X is bounded by a constant,

is said to be syndetic or with bounded gap. Otherwise stated, an infinite

word x is uniformly recurrent if, and only if, for all factors u ∈ L(x), the

set Tx(u) is infinite and syndetic.

Definition 1.2.10 One can endow AN with a distance d defined as follows.

Let x, y be two infinite words over A. Let x∧ y denote the longest common

prefix of x and y. Then the distance d is given by

d(x, y) :=

{
0, if x = y,

2−|x∧y|, otherwise.

It is obvious to see that, for all x, y, z ∈ AN, d(x, y) = d(y, x), d(x, z) ≤
d(x, y) + d(y, z) and d(x, y) ≤ max(d(x, z), d(y, z)). This last property is

not required to have a distance, but when it holds, the distance is said to

be ultrametric.

This notion of distance extends to AZ. Notice that the topology on AN

is the product topology (of the discrete topology on A). The space AN

is a compact Cantor set, that is, a totally disconnected compact space

without isolated points. Since AN is a (complete) metric space, it is therefore

relevant to speak of convergent sequences of infinite words. The sequence

(zn)n≥0 of infinite words over A converges to x ∈ AN, if for all ε > 0, there

exists N ∈ N such that, for all n ≥ N , d(zn, x) < ε. To express the fact

that a sequence of finite words (wn)n≥0 over A converges to an infinite word

y, it is assumed that A is extended with an extra letter c 6∈ A. Any finite

word wn is replaced with the infinite word wnccc · · · and if the sequence of

infinite words (wnccc · · · )n≥0 converges to y, then the sequence (wn)n≥0 is

said to converge to y.

Let (un)n≥0 be a sequence of non-empty finite words. If we define, for all
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` ≥ 0, the finite word v` as the concatenation u0u1 · · ·u`, then the sequence

(v`)`≥0 of finite words converges to an infinite word. This latter word is

said to be the concatenation of the elements in the infinite sequence of finite

words (un)n≥0. In particular, for a constant sequence un = u for all n ≥ 0,

v` = u`+1 and the concatenation of an infinite number of copies of the finite

word u is denoted by uω.

Definition 1.2.11 An infinite word x = x0x1 · · · is (purely) periodic if

there exists a finite word u = u0 · · ·uk−1 6= ε such that x = uω, i.e., for all

n ≥ 0, we have xn = ur where n = dk+r with r ∈ [[0, k−1]]. An infinite word

x is eventually periodic if there exist two finite words u, v ∈ A∗, with v 6= ε

such that x = uvvv · · · = uvω. Notice that purely periodic words are special

cases of eventually periodic words. For any eventually periodic word x,

there exist words u, v of shortest length such that x = uvω, then the integer

|u| (respectively |v|) is referred to as the preperiod (respectively period) of

x. An infinite word is said non-periodic if it is not ultimately periodic.

A set X ⊆ N of integers is eventually periodic if its characteristic word is

eventually periodic. Otherwise stated, X is eventually periodic if, and only

if, it is a finite union of arithmetic progressions. Recall that an arithmetic

progression is a set of integers of the kind pN + q = {pn+ q | n ∈ N}.

Definition 1.2.12 The complexity function of an infinite word x maps n ∈
N onto the number px(n) = CardLn(x) of distinct factors of length n

occurring in x.

This function will be studied in details in Chapter 4.

Definition 1.2.13 An infinite word x is Sturmian if px(n) = n+ 1 for all

n ≥ 0. In particular, Sturmian words are over a binary alphabet.

From the developments in Chapter 4 and in particular thanks to the cel-

ebrated theorem of Morse and Hedlund, Sturmian words are non-periodic

words of smallest complexity.

A survey on Sturmian words by J. Berstel and P. Séébold can be found in

(Lothaire 2002), the chapter by P. Arnoux in (Pytheas Fogg 2002) is also

of interest.

The complexity function counts the number of different factors of a given

length in an infinite word x. Each distinct factor u of length n increments

px(n) of one whatever it occurs only once in x or conversely occurs many

times. So to speak, px(n) does not reveal the frequency of occurrences of

the different factors. We might need more precise information concerning

the frequency of a factor.
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Definition 1.2.14 Let x be an infinite word. The frequency fx(u) of a

factor u of x is defined as the limit (when n tends towards infinity), if it

exists, of the number of occurrences of the factor u in x0x1 · · ·xn−1 divided

by n, i.e., provided the limit exists,

fx(u) = lim
n→+∞

|x[0, n− 1]|u
n

.

Let us now introduce orders on words. The sets A∗ and AN can be ordered

as follows.

Definition 1.2.15 Assume that (A,<) is a totally (or linearly) ordered al-

phabet. Then the set A∗ is totally ordered by the radix order (or sometimes

called genealogical order) defined as follows. Let u, v be two words in A∗.
We write u ≺ v if either |u| < |v|, or if |u| = |v| and there exist p, q, r ∈ A∗,
a, b ∈ A with u = paq, v = pbr and a < b. By u � v, we mean that either

u ≺ v or u = v. The set A∗ can also be totally ordered by the lexicographic

order defined as follows. Let u, v be two words in A∗, we write u < v if u

is a proper prefix of v or if there exist p, q, r ∈ A∗, a, b ∈ A with u = paq,

v = pbr and a < b. By u ≤ v, we mean that either u < v or u = v. .

Observe that on a unary (i.e., single letter) alphabet, the two orderings

over {a}∗ coincide but if the cardinality of the alphabet A is at least 2,

then the radix order is a well order (i.e., every non-empty subset of A∗

has a least element for this order) but the lexicographic order is not. For

instance, the set of words {anb | n ≥ 0} does not have a least element for

the lexicographic order.

Definition 1.2.16 Notice that the lexicographic order introduced on A∗

can naturally be extended to AN. Let x, y ∈ AN. We have x < y if there

exist p ∈ A∗, a, b ∈ A and w, z ∈ AN such that x = paw, y = pbz and a < b.

1.2.4 Morphisms

Particular infinite words of interest can be obtained by iterating mor-

phisms (or homomorphisms of free monoids). A survey on morphisms

is given in (Harju and Karhumäki 1997). Again the textbooks like

(Queffélec 1987), (Pytheas Fogg 2002), (Lothaire 1983), (Lothaire 2002) or

(Berstel, Aaron, Reutenauer, et al. 2008) are worth of reading for topics

not considered here.

Let A and B be two alphabets. A morphism (also called substitution)

is a map σ : A∗ → B∗ such that σ(uv) = σ(u)σ(v) for all u, v ∈ A∗ (see

also Definition 1.2.2). Note that the terminology substitution often refers
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in the literature to non-erasing endomorphisms. We similarly define the

notion of endomorphism if A = B. Notice that in particular, σ(ε) = ε.

Usually morphisms will be denoted by Greek letters. To define completely

a morphism, it is enough to know the images of the letters in A, the image of

a word u = u0 · · ·un−1 being the concatenation of the images of its letters,

σ(u) = σ(u0) · · ·σ(un−1). Otherwise stated, any map from A to B∗ can be

uniquely extended to a morphism from A∗ to B∗.

Definition 1.2.17 Let k ∈ N. A morphism σ : A∗ → B∗ is uniform (or

k-uniform) if for all a ∈ A, |σ(a)| = k. A 1-uniform morphism is often

called coding or letter-to-letter morphism. If for some a ∈ A, σ(a) = ε, then

σ is said to be erasing, otherwise it is said to be non-erasing.

If σ : A∗ → B∗ is a non-erasing morphism, it can be extended to a

map from AN to BN as follows. If x = x0x1 · · · is an infinite word

over A, then the sequence of words (σ(x0 · · ·xn−1))n≥0 is easily seen to

be convergent towards an infinite word over B. Its limit is denoted by

σ(x) = σ(x0)σ(x1)σ(x2) · · · . We similarly extend σ to a map from AZ to

BZ as follows. If x = · · ·x−2x−1. x0x1x2 · · · is a bi-infinite word over A,

then the sequence of words (σ(x−n · · ·x−1. x0 · · ·xn−1))n≥0 is easily seen

to be convergent towards a bi-infinite word over B. Its limit is here again

denoted by σ(x). Consequently, the definition of morphisms extend from

A∗ to A∗ ∪ AN ∪ AZ. For the sake of simplicity, we define morphisms on

A∗, but we consider implicitly their action on infinite and bi-infinite words.

Notice that if σ is erasing, then the image of an infinite or bi-infinite word

could be finite.

Let σ : A∗ → A∗ be a morphism. A finite, infinite or bi-infinite word x

such that σ(x) = x is said to be a fixed point of σ.

Definition 1.2.18 If there exist a letter a ∈ A and a word u ∈ A+ such

that σ(a) = au and moreover, if limn→+∞ |σn(a)| = +∞, then σ is said to

be (right) prolongable on a. Let σ : A∗ → A∗ be a morphism prolongable

on a. We have

σ(a) = a u, σ2(a) = a u σ(u), σ3(a) = a u σ(u)σ2(u), . . . .

Since, for all n ∈ N, σn(a) is a prefix of σn+1(a) and because |σn(a)| tends

to infinity when n→ +∞, the sequence (σn(a))n≥0 converges to an infinite

word denoted by σω(a) and given by

σω(a) := lim
n→+∞

σn(a) = a u σ(u)σ2(u)σ3(u) · · · .

This infinite word is a fixed point of σ. An infinite word obtained in this
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way by iterating a prolongable morphism is said to be generated by σ,

and more generally, purely substitutive or purely morphic. In the literature,

one also finds the term pure morphic. If x ∈ AN is purely morphic and if

τ : A → B is a coding, then the word y = τ(x) is said to be morphic or

substitutive.

Let A = {a, b, c} and σ : A∗ → A∗ be the endomorphism defined by

σ(a) = a, σ(b) = bb, σ(c) = aab. The morphism σ is not prolongable on

the letter c but the sequence of words (σn(c))n≥0 converges to the infinite

word aabω, which is morphic but not purely morphic. For other examples

of morphic words that are not purely morphic, see Example 4.6.5, Exer-

cise 4.12, Exercise 4.13, and Proposition 4.7.2. See also Exercise 10.1.2 in

the same vein. For an example of a purely morphic word that is fixed by

no non-erasing endomorphism other than the identity, see Exercise 4.11.

We also consider bi-infinite morphic words.

Definition 1.2.19 If there exist a letter b ∈ A and a word u ∈ A+ such

that σ(b) = ub and moreover, if limn→+∞ |σn(b)| = +∞, then σ is said to

be left prolongable on b. We have

σ(b) = u b, σ2(a) = σ(u)u b, σ3(a) = σ2(u)σ(u)u b, . . . .

Let σ : A∗ → A∗ be a morphism that is both right prolongable on a and left

prolongable on b. The sequence (σn(b).σn(a))n≥0 converges to a bi-infinite

word denoted by σω(b).σω(a) which is a fixed point of σ. If furthermore,

there exist a letter c ∈ A and ` ∈ N such that ba is a factor of σ`(c), then

the bi-infinite word σω(b).σω(a) is said to be generated by σ, and more

generally purely substitutive or purely morphic. We similarly define as in

Definition 1.2.18 a substitutive or morphic bi-infinite word.

Definition 1.2.20 For each morphism σ : A∗ → B∗, we define the width

of σ, denoted by ‖σ‖, as ‖σ‖ := maxa∈A |σ(a)|.

It is clear that |σ(w)| ≤ ‖σ‖ |w| for every w ∈ A∗.
Let us note that a morphism σ : A∗ → B∗ is injective if, and only if,

letters of A are mapped to distinct words and the language σ(A) is a code.

See (Lothaire 2002, Proposition 6.13).

Example 1.2.21 (Thue–Morse word) Consider the 2-uniform mor-

phism defined over the alphabet {a, b} by σ : a 7→ ab, b 7→ ba. The infinite

(purely morphic) word

σω(a) = abbabaabbaababbabaababbaabbabaab · · ·
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is the celebrated Thue–Morse word. This word can also be obtained as

follows. Consider the morphism γ : a 7→ b, b 7→ a and define the sequence of

finite words u0 = a and, for all n ≥ 1, un = un−1γ(un−1). It is an exercise

to show that the sequence (un)n≥0 converges to the Thue–Morse word. For

more details on the Thue–Morse word, see Section 4.10.4.

Many properties of the Thue–Morse word can be found in the paper

(Allouche and Shallit 1999). In several chapters of (Pytheas Fogg 2002),

the Thue–Morse word or the Fibonacci word introduced below are also

discussed in details.

Example 1.2.22 (Fibonacci word) Another consecrated example of

purely morphic word is the Fibonacci word. It is obtained from the non-

uniform morphism defined over the alphabet {a, b} by σ : a 7→ ab, b 7→ a,

σω(a) = (xn)n≥0 = abaababaabaababaababaabaababaabaababaababaa · · · .

It is a Sturmian word and can be obtained as follows. Let ϕ = (1 +
√

5)/2

be the Golden Ratio. For all n ≥ 1, if b(n+1)ϕc−bnϕc = 2, then xn−1 = a,

otherwise xn−1 = b. For more details, see Section 4.10.3.

Example 1.2.23 (Squares) Consider the alphabet A = {a, b, c} and the

morphism σ : A∗ → A∗ defined by σ : a 7→ abcc, b 7→ bcc, c 7→ c. We get

σω(a) = abccbccccbccccccbccccccccbccccccccccbcc · · · .

Using the special form of the images of b and c, it is not difficult to see

that the difference between the position of the nth b and the (n+ 1)st b in

σω(a) is 2n+1. Since the difference between two corresponding consecutive

squares (n+1)2−n2 is also 2n+1, if we define the coding τ : a, b 7→ 1, c 7→ 0,

we get exactly

τ(σω(a)) = 110010000100000010000000010000000000100 · · ·

which proves that the characteristic sequence of the set of squares is mor-

phic. One can show that this morphic sequence cannot be generated using

a uniform morphism, for instance see (Eilenberg 1974) where it is shown

that the set of squares is not k-recognisable. Also see Example 1.3.16.

Example 1.2.24 (Powers of 2) Consider the 2-uniform morphism de-

fined over the alphabet {a, b, c} by σ : a 7→ ab, b 7→ bc, c 7→ cc and the

coding τ : a, c 7→ 0, b 7→ 1. We have

σω(a) = abbcbcccbcccccccbcccccccccccccccbcc · · ·
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and

τ(σω(a)) = 01101000100000001000000000000000100 · · · .

Developing the same kind of arguments as in the previous example, this

latter morphic word is easily seen to be the characteristic word of the set of

powers of two. For more details on this morphic word, see Section 4.10.2.

For complements on morphisms, see Section 4.6.1. These notions will also

be extended to the framework of D0L and HD0L systems in Chapter 10,

see also Section 3.4.2, where a D0L system is a triple of the form (A, σ, w)

where A is an alphabet, σ is a morphism of A∗ and w is a word over A.

A language D, that is a set of words, is called a D0L language if there

exists a D0L-system (A, σ, w) such that D =
{
σk(w) | k ∈ N

}
. A language

H is called a HD0L language if there exist two alphabets A and B, a D0L

language D over A and a morphism τ : A∗ → B∗ such that H = τ(D).

1.3 Languages and machines

Formal languages theory is mostly concerned with the study of the math-

ematical properties of sets of words. For an exhaustive exposition on

regular languages and automata theory, see (Sakarovitch 2003), or in

the same spirit (Eilenberg 1974). See also the chapter (Yu 1997), or

(Sudkamp 2005), (Hopcroft and Ullman 1979) and the updated revision

(Hopcroft, Motwani, and Ullman 2006) for general introductory books on

formal languages theory. In (Perrin 1990), the relationship of automata

with recognisable sets of integers is presented. In this section, we do not

present languages of infinite words and the corresponding automata crafted

to recognise these languages, a reference is the book (Perrin and Pin 2003),

see also (Thomas 1990). Notions presented here have been kept minimal,

more definitions and results on finite automata and transducers can be

found in Section 2.6.

1.3.1 Languages of finite words

Let A be an alphabet. A subset L of A∗ is said to be a language. Note for

instance that this terminology is consistent with the one of Definition 1.2.8.

Since a language is a set of words, we can apply all the usual set operations

like union, intersection or set difference: ∪, ∩ or \. The concatenation of

words can be extended to define an operation on languages. If L,M are

languages, LM is the language of the words obtained by concatenation of
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a word in L and a word in M , i.e.,

LM = {uv | u ∈ L, v ∈M} .

We can of course define the concatenation of a language with itself, so it

permits to introduce the power of a language. Let n ∈ N, A be an alphabet

and L ⊆ A∗ be a language. The language Ln is the set of words obtained

by concatenating n words in L. We set L0 := {ε}. In particular, we recall

that An denotes the set of words of length n over A, i.e., concatenations of

n letters in A. The (Kleene) star of the language L is defined as

L∗ =
⋃

i≥0

Li .

Otherwise stated, L∗ contains the words that are obtained as the concate-

nation of an arbitrary number of words in L. Notice that the definition of

Kleene star is compatible with the notation A∗ introduced to denote the

set of finite words over A. We also write L≤n as a shorthand for

L≤n =

n⋃

i=0

Li.

Note that if the empty word belongs to L, then L≤n = Ln. We recall that

A≤n is the set of words over A of length at most n. If L is a language,

then alph(L) is the set of all letters which occur in the words of L, i.e.,

alph(L) = ∪u∈Lalph(u).

Example 1.3.1 Let L = {a, ab, aab} and M = {a, ab, ba} be two finite lan-

guages. We have L2 = {aa, aab, aaab, aba, abab, abaab, aaba, aabab, aabaab}
and M2 = {aa, aab, aba, abab, abba, baa, baab, baba}. One can notice that

Card(L2) = (CardL)2 but Card(M2) < (CardM)2. This is due to the fact

that all words in L2 have a unique factorisation as concatenation of two

elements in L but this is not the case for M , where (ab)a = a(ba). We can

notice that

L∗ = {a}∗ ∪ {ai1bai2b · · ·ainbain+1 | ∀n ≥ 1, i1, . . . , in ≥ 1, in+1 ≥ 0} .

Since languages are sets of (finite) words, a language can be either finite or

infinite. For instance, a language L differs from ∅ or {ε} if, and only if, the

language L∗ is infinite. Let L be a language, we set L+ = LL∗. The mirror

operation can also be extended from words to languages: L̃ = {ũ | u ∈ L}.

Definition 1.3.2 A language is prefix-closed (respectively suffix-closed) if

it contains all prefixes (respectively suffixes) of any of its elements. A

language is factorial if it contains all factors of any of its elements.
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Obviously, any factorial language is prefix-closed and suffix-closed. The

converse does not hold. For instance, the language {anb | n > 0} is suffix-

closed but not factorial.

Example 1.3.3 The set of words over {0, 1} containing an even number

of 1’s is the language

E = {w ∈ {0, 1}∗ | |w|1 ≡ 0 (mod 2)}
= {ε, 0, 00, 11, 000, 011, 101, 110, 0000, 0011, . . .} .

This language is closed under mirror, i.e., L̃ = L. Notice that the con-

catenation E{1}E is the language of words containing an odd number of

1’s and E ∪ E{1}E = E({ε} ∪ {1}E) = {0, 1}∗. Notice that E is neither

prefix-closed, since 1001 ∈ E but 100 6∈ E, nor suffix-closed.

Similarly as for infinite words (see Definition 1.2.12), we can count the

number of words of a language of a given length. A language L of A∗ is

said to have to have bounded growth if for every n there are less than k

words of length n in L, for a fixed integer k. Such languages are also called

slender. For more on slender languages, see, e.g., Proposition 2.6.3 and

Section 3.3.2.

If a language L over A can be obtained by applying to some finite lan-

guages a finite number of operations of union, concatenation and Kleene

star, then this language is said to be a regular language. This generation

process leads to regular expressions which are well-formed expressions used

to describe how a regular language is built in terms of these operations.

From the definition of a regular language, the following result is immediate.

Theorem 1.3.4 The class of regular languages over A is the smallest sub-

set of 2A∗

(for inclusion) containing the languages ∅, {a} for all a ∈ A and

closed under union, concatenation and Kleene star.

Example 1.3.5 For instance, the language L over {0, 1} whose words do

not contain the factor 11 is regular. This language can be described by

the regular expression L = {0}∗{1}{0, 01}∗ ∪ {0}∗. Otherwise stated, it

is generated from the finite languages {0}, {0, 01} and {1} by applying

union, concatenation and star operations. Its complement in A∗ is also reg-

ular and is described by the regular expression A∗{11}A∗. The language E

from Example 1.3.3 is also regular, we have the following regular expression

{0}∗({1}{0}∗{1}{0}∗)∗ describing E.
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1.3.2 Automata

As we shall briefly explain in this section, the regular languages are exactly

the languages recognised by finite automata.

Definition 1.3.6 A finite automaton is a labelled graph given by a 5-tuple

A = (Q,A,E, I, T ) where Q is the (finite) set of states, E ⊆ Q × A∗ × Q
is the finite set of edges defining the transition relation, I ⊆ Q is the set of

initial states and T is the set of terminal (or final) states. A path in the

automaton is a sequence

(q0, u0, q1, u1, . . . , qk−1, uk−1, qk)

such that, for all i ∈ [[0, k − 1]], (qi, ui, qi+1) ∈ E, u0 · · ·uk−1 is the label of

the path. Such a path is successful if q0 ∈ I and qk ∈ T . The language

L(A) recognised (or accepted) by A is the set of labels of all successful paths

in A.

Any finite automaton A gives a partition of A∗ into L(A) and A∗ \L(A).

When depicting an automaton, initial states are marked with an incoming

arrow and terminal states are marked with an outgoing arrow. A transition

like (q, u, r) is represented by a directed edge from q to r with label u,

q
u−→ r.

Example 1.3.7 In Figure 1.2 the automaton has two initial states p and

r, three terminal states q, r and s. For instance, the word ba is recognised

by the automaton. There are two successful paths corresponding to the

label ba: (p, b, q, a, s) and (p, b, p, a, s). For this latter path, we can write

p
b−→ p

a−→ s. On the other hand, the word baab is not recognised by the

automaton.

p q

r s

b

b

a
a

a

b

a
a

Fig. 1.2. A finite automaton.
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Example 1.3.8 The automaton in Figure 1.3 recognises exactly the lan-

guage E of the words having an even number of 1 from Example 1.3.3.

p q
1

1

0 0

Fig. 1.3. An automaton recognising words with an even number of 1.

Definition 1.3.9 Let A = (Q,A,E, I, T ) be a finite automaton. A state

q ∈ Q is accessible (respectively co-accessible) if there exists a path from an

initial state to q (respectively from q to some terminal state). If all states

of A are both accessible and co-accessible, then A is said to be trim.

Definition 1.3.10 A finite automaton A = (Q,A,E, I, T ) is said to be

deterministic (DFA) if it has only one initial state q0, if E is a subset of

Q×A×Q and for each (q, a) ∈ Q×A there is at most one state r ∈ Q such

that (q, a, r) ∈ E. In that case, E defines a partial function δA : Q×A→ Q

that is called the transition function of A. The adjective partial means that

the domain of δA can be a strict subset of Q × A. To express that the

partial transition function is total, the DFA can be said to be complete. To

get a total function, one can add to Q a new “sink state” s and, for all

(q, a) ∈ Q×A such that δA is not defined, set δA(q, a) := s. This operation

does not alter the language recognised by A. We can extend δA to be

defined on Q × A∗ by δA(q, ε) = q and, for all q ∈ Q, a ∈ A and u ∈ A∗,
δA(q, au) = δA(δA(q, a), u). Otherwise stated, the language recognised by

A is L(A) = {u ∈ A∗ | δA(q0, u) ∈ F} where q0 is the initial state of A. If

the automaton is deterministic, it is sometimes convenient to refer to the

5-tuple A = (Q,A, δA, I, T ).

As explained by the following result, for languages of finite words, finite

automata and deterministic finite automata recognise exactly the same lan-

guages.

Theorem 1.3.11 (Rabin and Scott 1959) If L is recognised by a finite

automaton A, there exists a DFA which can be effectively computed from A
and recognising the same language L.
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A proof and more details about classical results in automata theory

can be found in textbooks like (Hopcroft, Motwani, and Ullman 2006),

(Sakarovitch 2003) or (Shallit 2008). For standard material in automata

theory we shall not refer again to these references below.

One important result is that the set of regular languages coincides with

the set of languages recognised by finite automata.

Theorem 1.3.12 (Kleene 1956) A language is regular if, and only if, it

is recognised by a (deterministic) finite automaton.

Observe that if L, M are two regular languages over A, then L ∩ M ,

L∪M , LM and L\M are also regular languages. In particular, a language

over A is regular if, and only if, its complement in A∗ is regular.

Example 1.3.13 The regular language L = {0}∗{1}{0, 01}∗ ∪ {0}∗ from

Example 1.3.5 is recognised by the DFA depicted in Figure 1.4. Notice that

the state s is a sink: non-terminal state and all transitions remain in s.

s
1

0
1

0
0, 1

Fig. 1.4. A DFA accepting words without factor 11.

The following result is often useful to prove that a given language is not

regular. It appeared first in (Bar-Hillel, Perles, and Shamir 1961).

Lemma 1.3.14 (Pumping lemma) Let L ⊆ A∗ be a regular language

accepted by a DFA with ` states. If t ∈ L is a word of length |t| ≥ `, then

there exist u, v, w ∈ A∗ such that t = uvw, |uv| ≤ `, v 6= ε, and uv∗w ⊆ L.

The idea of the proof (pigeonhole principle) is that any path of length at

least ` must contain a cycle. Let us first consider a simple example showing

an application of the pumping lemma.

Example 1.3.15 Let us show that the language P of all the palindromes

over an alphabet A of cardinality at least 2 is not regular. Assume that P is

regular and accepted by a DFA with ` states. Consider the word a`ba` ∈ P ,

with a, b letters in A. With notation of Lemma 1.3.14, there exist i, j with

i ≥ 0, j > 0 and i+ j ≤ `, such that u = ai, v = aj , w = a`−i−jba` and for

all n ∈ N, uvnw = aianja`−i−jba` ∈ P which is a contradiction.
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Example 1.3.16 The language of the decimal representations of squares

R = {1, 4, 9, 16, 25, 36, . . .} ⊂ {0, . . . , 9}∗ is not regular. Assume to the

contrary that R is regular. Notice that the square of the integer with 10n1 as

decimal representation has 10n20n1 as decimal representation. Since regular

languages are closed under intersection, R′ = R∩ {1}{0}∗{2}{0}∗{1} must

be regular. A careful inspection shows that

R′ = {10n20n1 | n ≥ 0} .

Indeed, it is left as an exercise to show that 10i20j1 is the decimal repre-

sentation of a square if, and only if, i = j. Assume that R′ is accepted by

a DFA with ` states. Let us apply the pumping lemma to R′. The word

10`20`1 belonging to R′ can be factored as uvw with |uv| ≤ `. But uvkw

does not belong to R′ for k > 1 which leads to a contradiction.

The special case of morphic words obtained by q-uniform morphism were

introduced by A. Cobham in his seminal paper (Cobham 1972). These

infinite words are usually referred to as q-automatic sequences. We con-

clude this section on automata by explaining where does the term “auto-

matic” come from. See also (Hopcroft and Ullman 1979) and the surveys

(Allouche 1987), (Allouche and Mendès France 1995).

Definition 1.3.17 A deterministic finite automaton with output (DFAO)

over an alphabet A is a 6-tuple A = (Q,A, δ, {q0}, B, τ) where Q, δ and

{q0} are defined as for DFA, δ : Q× A → Q being a total function, B is a

finite alphabet and τ : Q→ B is the output function.

A DFAO acts like a map from A∗ to B. With any word w ∈ A∗ is

associated the output τ(δ(q0, w)). If B = {b1, . . . , bt} then the DFAO A
corresponds to a partition of A∗ into t (regular) languages

Li = {w ∈ A∗ | τ(δ(q0, w)) = bi}, i = 1, . . . , t .

An infinite word x = (xn)n≥0 ∈ BN is said to be k-automatic if there

exists a DFAO (Q, {0, . . . , k − 1}, δ, {q0}, B, τ) such that, for all n,

xn = τ(δ(q0, repk(n)))

where repk(n) denotes the k-ary representation of n (see Section 1.6).

Roughly speaking, the nth term of the sequence is obtained by feeding

a DFAO with the k-ary representation of n. For a complete and compre-

hensive exposition on k-automatic sequences and their applications see the

book (Allouche and Shallit 2003).

Theorem 1.3.18 (Cobham 1972) Let k ≥ 2. An infinite word x ∈ AN is
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k-automatic if, and only if, there exist a k-uniform morphism σ : B∗ → B∗

prolongable on a letter b ∈ B and a coding τ : B → A such that x =

τ(σω(b)).

Example 1.3.19 We have seen in Example 1.2.21 that the Thue–Morse

word is generated using a 2-uniform morphism. This word is also 2-

automatic. Indeed, we can consider the automaton in Figure 1.3 as a DFAO

where the output of the states p and q are respectively 0 and 1.

1.3.3 Transducers

Let A,B be two alphabets. A transducer is an automaton given by a 6-

tuple T = (Q,A,B,E, I, T ) whose transitions are labelled by elements in

A∗ ×B∗ instead of considering a unique alphabet A. We can therefore use

the terminology introduced for automata. Notice that to obtain the label

of a path, if (u, v), (w, x) ∈ A∗ × B∗, then the product in A∗ × B∗ is the

concatenation component-wise, i.e., (u, v)(w, x) = (uw, vx). The language

accepted by T is a subset of A∗ ×B∗, i.e., a relation from A∗ into B∗.
It is common to encounter special cases of transducers. First, if labels of

transitions belong to A×B, then the transducer is said to be letter-to-letter.

From a given transducer T = (Q,A,B,E, I, T ), we get an automaton T ′ =

(Q,A,E′, I, T ), the underlying input automaton of T , where (q, u, q′) ∈ E′

if, and only if, there exists v ∈ B∗ such that (q, (u, v), q′) ∈ E. If T ′ is

deterministic, the transducer T is said to be sequential.

When depicting an automaton recall that terminal states are marked

by an outgoing arrow. We consider here transducers where the outgoing

arrows, i.e., the edges designating terminal states, can be labelled with

pairs of the form (ε, w). The convention to define the relation realised by

T is that if a path from i ∈ I to t ∈ T is labelled by (u, v) and if t has

an outgoing arrow labelled by (ε, w), then (u, vw) belongs to the relation

realised by T . This can be seen as a shortcut to describe the following

construction. Note that the labels of outgoing arrows are not involved in

the possible sequentiality of the transducer as defined above. First, add a

new terminal state t′ that does not belong to the set of states of T and

having only incident edges. For all terminal states t ∈ T having a labelled

outgoing arrow, add an edge with that label from t to t′. The new set of

terminal states is the subset of T made of the terminal states with unlabelled

outgoing arrow and t′. An example is given below, compare Figures 1.5

and 1.6. Another way of performing this is to to consider terminal states

as functions, as in Section 2.6.

Finally, it is implicitly understood that concatenation of labels of transi-
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tions is read from left to right. But if words are read from right to left, we

speak of right transducers.

We recall that a primer on finite automata and transducers is given in

Section 2.6.

Example 1.3.20 Consider the sequential right transducer depicted in Fig-

ure 1.5. Recall that the adjective “right” means that entries are read from

right to left. For instance (101, 1000) and (1001, 1010) belong to the relation

q3 q2 q1 q0

ε |10ε |1

1 |ε

0 |ε

0 |0

1 |0

0 |0 1
0 |0, 1 |1

Fig. 1.5. A transducer.

realised by the right transducer. Indeed, we have the successful paths

q0
1|ε−→ q1

0|0−→ q2
1|0−→ q1

ε|10−→
and

q0
1|ε−→ q1

0|0−→ q2
0|01−→ q3

1|1−→ q4

where consecutive labels (u1, v1), . . . , (uk, vk), ui, vi ∈ {0, 1}∗ are concate-

nated from the right: (uk · · ·u1, vk · · · v1). An equivalent right transducer

realising the same relation is given in Figure 1.6.

1 |ε

0 |ε

0 |0

1 |0

ε |1 ε |10

0 |0 1
0 |0, 1 |1

Fig. 1.6. Another transducer realising the same relation.

1.4 Associated matrices

Let K be a field. The set of matrices with r rows and c columns having

entries in K is denoted by Kr×c. If entries are indexed by elements belonging
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to two finite sets S and T , we write KS×T . Let A = (Q,A,E, I, T ) be an

automaton such that E ⊆ Q × A × Q, i.e., labels of edges are letters.

An automaton being a directed graph, we can define its adjacency matrix

M ∈ NQ×Q indexed by Q×Q by

Mq,r = Card{a ∈ A | (q, a, r) ∈ E} .

If we are dealing with more than one automaton, we use notation like M(A)

to specify the considered automaton. Using classical arguments from graph

theory, one can shows that, for all n ≥ 0, (Mn)q,r counts the number of

paths of length n from q to r. In particular, if A is deterministic, the

element (Mn)q,r is the number of words of length n which are labels of

paths from q to r.

Example 1.4.1 Consider the automaton given in Figure 1.4. If states are

ordered from left to right, we get the adjacency matrix

M =




1 1 0

1 0 1

0 0 2


 .

It is easy to see that, for all n ≥ 1,

Mn =




Fn Fn−1 ∗
Fn−1 Fn−2 ∗

0 0 2n


 .

where F−1 = 0, F0 = 1 and Fj = Fj−1 + Fj−2 for all j ≥ 1. In particular,

the number of words of length n ≥ 0 over {0, 1} not containing the factor

“11” is Fn +Fn−1 = Fn+1. Indeed, one has to count paths of length n from

the initial state to one of the two terminal states. So we sum up the first

two entries on the first row.

The same kind of idea can be applied to morphisms. Let σ : A∗ → A∗

be an endomorphism. The matrix Mσ ∈ NA×A associated with σ is called

the incidence matrix of σ and is defined by

∀a, b ∈ A, (Mσ)a,b = |σ(b)|a .

Let us recall that P stands for the abelianisation map. If A =

{a1, . . . , ad}, then the matrix Mσ can be defined by its columns:

Mσ =
(
P(σ(a1)) · · · P(σ(ad))

)

and it satisfies:

∀w ∈ A∗, P(σ(w)) = MσP(w) .
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A square matrix M ∈ Rn×n with entries in R≥0 is irreducible if, for all

i, j, there exists k such that (Mk)i,j > 0. A square matrix M ∈ Rn×n with

entries in R≥0 is primitive if there exists k such that, for all i, j, we have

(Mk)i,j > 0. Similarly, a morphism over the alphabet A is irreducible if its

incidence matrix is irreducible. A substitution is primitive if its incidence

matrix is primitive.

The terminology irreducible comes from the fact that a matrix M is

irreducible if, and only if, if it has no non-trivial invariant space of coordi-

nates. Primitive matrices are also called irreducible and aperiodic matrices.

See (Gantmacher 1960) or (Seneta 1981) for details on matrices with non-

negative entries.

One checks that a primitive morphism always admits a power that is (left

and right) prolongable, and which thus generates both an infinite word

and a bi-infinite word which are fixed points of σ. See (Queffélec 1987,

Proposition V.1).

Theorem 1.4.2 (Perron–Frobenius’ theorem) Let M be an irre-

ducible matrix with non-negative entries. Then M admits a positive eigen-

value α which is larger than or equal in modulus to the other eigenvalues

λ: α ≥ |λ|. The eigenvalue α and its algebraic conjugates (that is, the

roots of the minimal polynomial of α) are simple roots of the characteristic

polynomial of M and thus are simple eigenvalues. Furthermore, there exists

an eigenvector with positive entries associated with α. The eigenvalue α is

called the Perron–Frobenius eigenvalue of M.

Furthermore, if M is primitive, then the eigenvalue α dominates (strictly)

in modulus the other eigenvalues λ: α > |λ|.

Definition 1.4.3 Let σ be a morphism. If its incidence matrix Mσ is irre-

ducible, then the Perron–Frobenius eigenvalue of Mσ is called the inflation

factor of the morphism σ.

Lemma 1.4.4 (Gantmacher 1960) Let M be an irreducible matrix with

non-negative entries, and let α be its Perron–Frobenius eigenvalue. The

inequality αv ≤Mv (considered as a component-wise inequality) either im-

plies that v is an eigenvector associated with the Perron–Frobenius eigen-

value, or that v = 0. In either case, we have Mv = αv.

As an application of Perron–Frobenius’ theorem, we deduce the exis-

tence of frequencies for every factor of an infinite word generated by a

primitive morphism. For a proof, see (Queffélec 1987) or Chapter 5 in

(Pytheas Fogg 2002). For general results on frequencies of factors, see

Chapter 7.
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Theorem 1.4.5 Let σ be a primitive prolongable morphism. Let u be an

infinite word generated by σ. Then every factor of u has a frequency. Fur-

thermore, all the frequencies of factors are positive. The frequencies of the

letters are given by the coordinates of the positive eigenvector associated

with the Perron–Frobenius eigenvalue, renormalised in such a way that the

sum of its coordinates equals 1.

The positive eigenvector associated with the Perron–Frobenius eigenvalue,

renormalised in such a way that the sum of its coordinates equals 1 is usually

called the normalised Perron–Frobenius eigenvector or Perron–Frobenius

eigenvector. This is the normalisation choice that will be used in Chapter 10.

Furthermore, words generated by primitive morphisms are uniformly re-

current:

Proposition 1.4.6 Let σ be a primitive morphism. For every k ∈ N, any

fixed point of σk is uniformly recurrent. Let σ be a morphism prolongable

on the letter a ∈ A. We assume furthermore that all the letters in A

actually occur in σω(a) and that limn→+∞ |σn(b)| = +∞ for all b ∈ A. The

morphism σ is primitive if, and only if, the fixed point of σ beginning by a

is uniformly recurrent.

For an example of a morphism which is not primitive with a uniformly

recurrent fixed point, consider σ : 0 7→ 0010, 1 7→ 1. The infinite word σω(0)

is called the Chacon word (see Exercise 1.8). One has limn→+∞ |σn(1)| = 1.

Also see connections with Section 6.5.

The case where the Perron–Frobenius eigenvalue of the incidence matrix

of a primitive morphism is a Pisot number is of particular interest.

Definition 1.4.7 An algebraic integer α > 1, i.e., a root of a monic poly-

nomial with integer coefficients, is a Pisot-Vijayaraghavan number or a Pisot

number if all its algebraic conjugates λ other than α itself satisfy |λ| < 1.

An algebraic integer is a unit if its norm equals 1, i.e., if the constant term

of its minimal polynomial equals 1 in absolute value.

We recall that the algebraic conjugates of an algebraic integer are the

roots of its minimal polynomial.

A primitive morphism σ is said to be Pisot if its Perron–Frobenius eigen-

value is a Pisot number.

A Pisot morphism σ is said to be unit if its Perron–Frobenius eigenvalue

is a unit Pisot number.
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Example 1.4.8 Consider the Fibonacci morphism σ introduced in Exam-

ple 1.2.22. The incidence matrix of σ is

Mσ =

(
1 1

1 0

)
.

Since M2
σ contains only positive entries, the morphism is primitive. The

Perron–Frobenius eigenvalue of Mσ is the Golden Ratio ϕ = (1 +
√

5)/2

satisfying ϕ2 − ϕ − 1 = 0. This algebraic integer has (1−
√

5)/2 as Galois

conjugate which is of modulus less than 1. Consequently, we have a unit

Pisot morphism.

A Pisot morphism σ is said to be a Pisot irreducible substitution if the

algebraic degree of the Perron–Frobenius eigenvalue of its incidence matrix

is equal to the size of the alphabet. This is equivalent to the fact that

the characteristic polynomial of its incidence matrix is irreducible. A Pisot

morphism which is not a Pisot irreducible morphism is called a Pisot re-

ducible morphism. Examples of Pisot reducible morphisms are 1 → 12,

2 → 3, 3 → 4, 4 → 5, 5 → 1 and the Thue–Morse morphism 1 → 12,

2 → 21. Indeed, the characteristic polynomial of the incidence matrix is

respectively equal to X5 − X4 − 1 = (X2 − X + 1)(X3 − X − 1) and to

X2 − 2X = X(X − 2).

Theorem 1.4.9 Let σ be a morphism such that its incidence matrix Mσ

is irreducible. If its Perron–Frobenius eigenvalue α is such that for every

other eigenvalue λ of Mσ one has α > 1 > |λ| > 0, then σ is primitive and

Pisot irreducible.

For a proof, see (Canterini and Siegel 2001b) and (Pytheas Fogg 2002,

Chapter 1).

We end this section with the notion of spectral radius that will de devel-

oped in Chapter 11, also see Section 4.7.2.2. Let ‖ ·‖ be a submultiplicative

matrix norm. That is a vector norm that satisfies for all square matrices

A, B, ‖AB‖ ≤ ‖A‖ · ‖B‖. Note that some authors use the terminology

matrix norm only for those norms which are submultiplicative. The spectral

radius of the complex square matrix A is defined as the largest modulus of

its eigenvalues. It is proved to represent the asymptotic growth rate of the

norm of the successive powers of A:

ρ(A) = lim
t→∞

‖At‖1/t .

This quantity does provably not depend on the used norm.
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1.5 A glimpse at numeration systems

Various numeration systems will be considered in details in this book, see

mainly Chapters 2 and 3: integer base, real base, rational base, canonical

number systems, abstract numeration systems. As a short appetiser, we

merely recall in this section how to write down non-negative integers in the

usual p-ary numeration system, p ≥ 2 being an integer. More details are

given in Section 2.2.1.

For any positive integer n, there exist ` ≥ 0 such that p` ≤ n < p`+1 and

unique coefficients c0, . . . , c` ∈ {0, . . . , p− 1} such that

n =
∑̀

i=0

ci p
i and c` 6= 0 .

The coefficients c`, . . . , c0 can be computed by successive Euclidean divi-

sions. Set n0 := n. We have n0 = c` p
` + n1 with n1 < p` and for

i = 1, . . . , `, ni = c`−i p
`−i + ni+1 with ni+1 < p`−i. The word c` · · · c0

is said to be the p-ary representation or p-expansion of n (sometimes called

greedy representation) and we write

repp(n) = c` · · · c0 .

Longer developments are given Section 2.2.1 of Chapter 2 where repp(n) is

denoted by 〈n〉p. We set repp(0) = ε. So repp is a one-to-one correspondence

between N and {ε} ∪ {1, . . . , p− 1}{0, . . . , p− 1}∗.
Let A ⊂ Z be a finite alphabet and u = a0 · · · a` be a word over A. We

set

valp(a0 · · · a`) =
∑̀

i=0

a`−i p
i .

We say that valp(u) is the numerical value or evaluation of u, also denoted

by πp(u) (see, e.g., Chapter 2).

The restriction of repp ◦ valp to the set of words over A having a non-

negative numerical value is the normalisation:

νA,p : u ∈ A∗ 7→ repp(valp(u)) .

Again, reference to the alphabet A can be omitted if the context is clear.

Example 1.5.1 (Signed digits) Let A = {1, 0, 1} where 1 stands for

−1. We have val2(1001) = 7 and val2(101) = −3. In particular,

rep2(val2(1001)) = 111, i.e., ν2(1001) = 111.
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Definition 1.5.2 A set X ⊆ N of integers is p-recognisable if the language

repp(X) = {repp(n) | n ∈ X}
is regular. Observe that a set X is p-recognisable if, and only if, its charac-

teristic word is p-automatic.

Proposition 1.5.3 Let p ≥ 2. Any eventually periodic set of integers is

p-recognisable.

It is an easy exercise. See for instance (Sakarovitch 2003, Prologue) for a

proof. The realisation of division by finite automata (together with arith-

metic operations modulo q) is discussed in Chapter 2. Also see Proposi-

tion 3.1.9 for similar considerations.

Definition 1.5.4 Two integers p, q ≥ 2 are multiplicatively independent if

the only integers m,n satisfying pm = qn are m = n = 0. Otherwise,

p and q are said multiplicatively dependent. In other words, p and q are

multiplicatively dependent if, and only if, log p/ log q is rational.

Theorem 1.5.5 (Cobham 1969) Let p, q ≥ 2 be two multiplicatively in-

dependent integers. If X ⊆ N is both p-recognisable and q-recognisable, then

X is eventually periodic.

Many efforts have been made to get a simpler presentation of Cob-

ham’s theorem, as G. Hansel did in (Hansel 1982). Also see (Perrin 1990),

(Allouche and Shallit 2003) and (Rigo and Waxweiler 2006).

Several aspects of numeration systems are treated in Chapter 2. Vari-

ous numeration systems for the representation of integers are discussed in

(Fraenkel 1985). The chapter by Ch. Frougny in (Lothaire 2002) presents

non-standard numeration systems for the representations of integers as well

as β-numeration systems. The surveys (Barat, Berthé, Liardet, et al. 2006)

and (Bruyère, Hansel, Michaux, et al. 1994) are also of interest and contain

many pointers to the existing literature. The latter one develops also a log-

ical characterisation of p-recognisable sets in terms of an extension of the

Presburger arithmetic 〈N,+〉 and extension of Cobham’s theorem on the

base dependence to the multidimensional case.

1.6 Symbolic dynamics

Let us introduce some basic notions in symbolic dynamics. For ex-

pository books on the subject, see (Cornfeld, Fomin, and Sinăı 1982),

(Kitchens 1998), (Lind and Marcus 1995), (Perrin 1995b), (Queffélec 1987)

and (Kůrka 2003).
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1.6.1 Subshifts

Let S denote the following map defined on AN, called the one-sided shift:

S((xn)n≥0) = (xn+1)n≥0 .

In particular, if x = x0x1x2 · · · is an infinite word overA, then, for all n ≥ 0,

its suffix xnxn+1 · · · is simply Sn(x). Note that for convenience, the shift

is sometimes denoted by σ, when no misunderstanding with morphisms on

words can be made. This latter convention is used in Chapter 2. The map

S is uniformly continuous, onto but not one-to-one on AN. This notion

extends in a natural way to AZ. In this latter case, the shift S is one-to-

one. The definitions given below correspond to the one-sided shift, but they

extend to the two-sided shift.

Definition 1.6.1 Let x be an infinite word over the alphabet A. The orbit

of x under the action of the shift S is defined as the set

O(x) = {Snx | n ∈ N} .

The symbolic dynamical system associated with x is then defined as

(O(x), S), where O(x) ⊆ AN is the closure of the orbit of x.

In the case of bi-infinite words we similarly define O(x) = {Snx | n ∈ Z}
where the (two-sided) shift map is defined on AZ. The set Xx := O(x) is

a closed subset of the compact set AN, hence it is a compact space and S

is a continuous map acting on it. One checks that, for every infinite word

y ∈ AN, the word y belongs to Xx if, and only if, L(y) ⊆ L(x). For a proof,

see (Queffélec 1987) or Chapter 1 of (Pytheas Fogg 2002). Note that O(x)

is finite if, and only if, x is eventually periodic.

More generally, let Y be a closed subset of AN that is stable under the

action of the shift S. The system (Y, S) is called a subshift. The full shift

is defined as (AN, S).

A subshift (X,S) is said periodic if there exist x ∈ X and an integer k

such that X = {x, Sx, . . . , Skx = x}. Otherwise it is said to be aperiodic.

If (Y, S) is a subshift, then there exists a set X ⊆ A∗ such that for every

u ∈ AN, the word u belongs to Y if, and only if, L(u) ∩X = ∅. A subshift

Y is said to be of finite type if the set X ⊆ A∗ is finite. A subshift is said

to be sofic if the set X is a regular language.

Example 1.6.2 The set of infinite words over {0, 1} which do not contain

the factor 11 is a subshift of finite type, whereas the set of infinite words

over {0, 1} having an even number of 1’s between two occurrences of the

letter 0 is a sofic subshift which is not of finite type.
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Definition 1.6.3 Let x ∈ AN. For a word w = w0 · · ·wr, the cylinder set

[w]x is the set {y ∈ Xx | y0 = w0, · · · , yr = wr}. If the context is clear, the

subscript x will be omitted.

The cylinder sets are clopen (open and closed) sets and form a basis of

open sets for the topology of Xx. Furthermore, one checks that a clopen

set is a finite union of cylinders. In the bi-infinite case the cylinders are the

sets [u.v]x = {y ∈ Xx|yi = ui, yj = vj , −|u| ≤ i ≤ −1, 0 ≤ j ≤ |v|− 1} and

the same remarks hold.

1.6.2 Dynamical systems

We have introduced the notions of a symbolic dynamical system and of a

subshift. Such discrete systems belong to the larger class of topological

dynamical systems, which have been intensively studied in topological dy-

namics. See for instance (Cornfeld, Fomin, and Sinăı 1982). For references

on ergodic theory, see e.g. (Walters 1982) or (Silva 2008).

Definition 1.6.4 A topological dynamical system (X,T ) is defined as a

compact metric space X together with a continuous map T defined onto

the set X .

A topological dynamical system (X,T ) is minimal if, for all x in X, the

orbit of x, i.e., the set {T nx | n ∈ N}, is dense in X .

Let us note that if (X,S) is a subshift, and if X is furthermore assumed

to be minimal, then X is periodic if, and only if, X is finite.

The symbolic dynamical system (Xx, S) associated with the infinite word

x is minimal if, and only if, for every y ∈ Xx, L(y) = L(x). More generally,

properties of symbolic dynamical systems associated with an infinite word

are strongly related to its combinatorial properties. For a proof of Theorem

1.6.5 below, see for instance Chapter 5 of (Pytheas Fogg 2002).

Theorem 1.6.5 Let x be an infinite word. If x is recurrent, then the shift

S : Xx → Xx is onto. Furthermore, (Xx, S) is minimal if, and only if, x is

uniformly recurrent.

In other words, x is uniformly recurrent if, and only if, L(y) = L(x) for

every y such that L(y) ⊆ L(x). The idea of the proof of the equivalence in

Theorem 1.6.5 can be sketched as follows: if w is a factor of x, we write

O(x) =
⋃

n∈N

S−n[w] ,

and we conclude by a compactness argument.
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Two dynamical systems (X1, T1) and (X2, T2) are said to be topologically

conjugate (or topologically isomorphic) if there exists an homeomorphism f

from X1 onto X2 which conjugates T1 and T2, that is:

f ◦ T1 = T2 ◦ f .
Let (X,T ) be a topological dynamical system. Let M(X) stand for the

set of Borel probability measures on X . A Borel measure µ defined over X

is said T -invariant if µ(T−1(B)) = µ(B), for every Borel set B. The map

T is said to preserve the measure µ. This is equivalent to the fact that for

any continuous function f ∈ C(X), then
∫
f(Tx) dµ(x) =

∫
f(x) dµ(x). A

topological system (X,T ) always has an invariant probability measure. For

more details, see Proposition 7.2.4.

The case where there exists only one T -invariant measure is of particular

interest. A topological dynamical system (X,T ) is said to be uniquely er-

godic if there exists one and only one T -invariant Borel probability measure

over X .

We have considered here the notion of dynamical system, that is, a map

acting on a given set, in a topological context. This notion can be extended

to measurable spaces: we thus get measure-theoretic dynamical systems.

For more details about all of the notions defined in this section, one can

refer to (Walters 1982).

Definition 1.6.6 A measure-theoretic dynamical system is defined as a sys-

tem (X,T, µ,B), where B is a σ-algebra, µ a probability measure defined

on B, and T : X → X is a measurable map which preserves the measure µ,

i.e., for all B ∈ B, µ(T−1(B)) = µ(B).

A measure-theoretic dynamical system (X,T, µ,B) is ergodic if for every

B ∈ B such that T−1(B) = B, then B has either zero measure or full

measure.

In particular, a uniquely ergodic topological dynamical system yields an

ergodic measure-theoretic dynamical system.

A measure-theoretic ergodic dynamical system satisfies the Birkhoff er-

godic theorem, also called individual ergodic theorem. Let us recall that the

abbreviation a.e. stands for “almost everywhere”: a property holds almost

everywhere if the set of elements for which the property does not hold is

contained in a set of zero measure.

Theorem 1.6.7 (Birkhoff Ergodic Theorem) Let (X,T, µ,B) be a

measure-theoretic dynamical system. Let f ∈ L1(X,R). Then the sequence

( 1
n

∑n−1
k=0 f ◦ T k)n≥0 converges a.e. to a function f∗ ∈ L1(X,R). One has
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f∗ ◦ T = f∗ a.e. and
∫

X f∗ dµ =
∫

X f dµ. Furthermore, if T is ergodic,

since f∗ is a.e. constant, one has:

∀f ∈ L1(X,R) ,
1

n

n−1∑

k=0

f ◦ T k µ−a.e.−−−−→
n→∞

∫

X

f dµ .

The notion of conjugacy between two topological dynamical systems ex-

tends in a natural way to this context. Two measure-theoretic dynam-

ical systems (X1, T1, µ1,B1) and (X2, T2, µ2,B2) are said to be measure-

theoretically isomorphic if there exist two sets of full measure B1 ∈ B1,

B2 ∈ B2, a measurable map f : B1 → B2 called conjugacy map such that

• the map f is one-to-one and onto,

• the reciprocal map of f is measurable,

• f ◦ T1(x) = T2 ◦ f(x) for every x ∈ B1 ∩ T−1
1 (B1),

• µ2 is the image of the measure µ1 with respect to f , that is,

∀B ∈ B2, µ1(f
−1(B ∩ B2)) = µ2(B ∩B2) .

If the map is f is only onto, then (X2, T2, µ2,B2) is said to be a measure-

theoretic factor of (X1, T1, µ1, B1).

1.6.3 Substitutive dynamical systems

As a class of examples, let us consider symbolic dynamical systems associ-

ated with purely substitutive words. Note that for such symbolic dynamical

systems, one rather uses the terminology “substitution” than the terminol-

ogy “morphism”.

First we recall that if σ is a primitive substitution, then there exists a

power of σ that is prolongable, and thus, which generates an infinite word

(see Definition 1.2.18). Similarly, there exists a power of σ which generates

a bi-infinite word which is purely morphic in the sense of Definition 1.2.19.

For more details, see (Queffélec 1987, Proposition V.1). We then deduce

from Proposition 1.4.6 and Theorem 1.6.5 that if σ is a primitive prolongable

substitution, then all the (infinite or bi-infinite) words generated by σ are

uniformly recurrent, and thus have the same language. In other words, all

the symbolic dynamical systems associated with any of the words generated

by one of the powers of σ do coincide. Hence, we can associate in a natural

way with a primitive substitution a symbolic dynamical system.

Definition 1.6.8 Let σ be a primitive substitution. The symbolic dynam-

ical system associated with σ is the system associated with any of the (in-

finite or bi-infinite) words generated by one of the powers of σ, according

respectively to Definitions 1.2.18 and 1.2.19. We denote it by (Xσ , S).
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Let us quote an interesting property of substitutive dynamical sys-

tems associated with a primitive substitution. For more details, see

(Queffélec 1987) and (Pytheas Fogg 2002).

Theorem 1.6.9 Let σ be a primitive substitution. The system (Xσ , S) is

uniquely ergodic.

The corresponding invariant measure is uniquely defined by its values on

the cylinders: the measure of the cylinder [w] is defined as the frequency

of the finite word w in any element of Xσ, which does exist and does not

depend on the choice of the fixed point, according to Theorem 1.4.5.

1.7 Exercises

Exercise 1.1 Show that over a binary alphabet, any word of length ≥ 4

contains a square as factor.

Exercise 1.2 Show that over a ternary alphabet A, it is possible to build

an infinite word avoiding squares. See for instance (Lothaire 1983). As a

by-product, show that the set of (finite) words over A having a non-empty

factor which is a square, is not regular.

Exercise 1.3 Show that a word u of even (respectively odd) length is a

palindrome if, and only if, there exists a word v such that u = vṽ (respec-

tively there exist a word v and a letter a such that u = vaṽ).

Exercise 1.4 Show that if L and M are regular languages then L ∩M is

also regular.

Exercise 1.5 Let L be a language over the unary alphabet {a}. Show that

L is regular if, and only if, there exists an eventually periodic set X ⊆ N
such that L = {ai | i ∈ X}.

Exercise 1.6 Let L be a regular language over A. Show that |L| = {|u| :
u ∈ L} ⊆ N is eventually periodic. Give a counter-example illustrating that

the converse does not hold.

Exercise 1.7 Prove that a Sturmian word is recurrent. Give an example

of a bi-infinite word x with complexity function satisfying px(n) = n+1 for

all n that is not recurrent.
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Exercise 1.8 (Chacon word) We recall that the Chacon morphism σ is

defined over the alphabet {0, 1} by σ : 0 7→ 0010, 1 7→ 1. Prove that the

Chacon word σω(0) begins with the following sequence of words (bn)n≥0:

b0 = 0, and ∀n ∈ N, bn+1 = bnbn1bn.

Deduce that the Chacon word is uniformly recurrent.

Exercise 1.9 Give an example of a morphism that is irreducible but not

primitive.

1.8 Notes

The study of combinatorics on words can be traced back to the work of

A. Thue (Thue 1906) in 1906 and later on (Thue 1912) where he inves-

tigated repetitions in words, also see (Berstel 1995), then rooted in the

papers (Morse and Hedlund 1938), (Morse and Hedlund 1940). Later on,

impulsion was given on the one hand by M.-P. Schützenberger in France

and on the other hand by P. S. Novikov and S. I. Adjan in former Russia.

Now combinatorics on words is considered as a research topic by itself and

has received classification subject 68R15 by the American Mathematical So-

ciety. For a comprehensive survey on the origins of combinatorics on words,

see (Berstel and Perrin 2007).

For a nice account on the history of automata theory, see

(Perrin 1995a). A first reference to automata can be traced back to

(McCulloch and Pitts 1943). The notion of regular expressions goes back

to (Kleene 1956) and non-deterministic automata were introduced in

(Rabin and Scott 1959).
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2.1 Introduction

Numbers do exist — independently of the way we represent them, of the

way we write them. And there are many ways to write them: integers as a

finite sequence of digits once a base is fixed, rational numbers as a pair of

integers or as an eventually periodic infinite sequence of digits, or reals as

an infinite sequence of digits but also as a continued fraction, just to quote

a few. Operations on numbers are defined — independently of the way they

are computed. But when they are computed, they amount to be algorithms

that work on the representations of numbers.

Fig. 2.1. Numbers do exist, a Greek view: π
4

= C
P

= D
S

. Numbers are then ratio
between measures (C = length of the circle, P = perimeter of the square, D =
surface of the disk, S = surface of the square).

In this chapter, numbers will be represented by their expansion in a base,

or more generally, with respect to a basis, hence by words over an alphabet

of digits. The algorithms we shall consider are those that can be performed

by finite state machines, that is, by the simplest machines one can think of.

Natural questions then arise immediately. First, whether or not the whole

set of expansions of all the positive integers, or the integers, or the real

numbers (within an interval) is itself a set of finite, or infinite, words that

is recognised by finite automata. Second, which operations on numbers can

thus be defined by means of finite automata? how is this related to the

chosen base? how, in a given base, may the choice of digits influence the

49
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way the operations can be computed? These are some of the questions

that will be asked and, hopefully and to a certain extent, answered in this

chapter.

It is not only these questions, repeated in every section, that will give this

chapter its unity but also the methods with which we shall try to answer

them. In every numeration system, defined by a base or a basis, we first

consider a trivial infinite automaton — the evaluator, whose states are the

values of the words it reads — from which we define immediately the zero

automaton which recognises the words written on a signed digit alphabet

and having value 0. From the zero automaton we then derive transduc-

ers, called digit-conversion transducers, that relate words with same values

but written differently on the same or distinct alphabets of digits and,

from these, transducers for the normalisation, the addition, etc. Whether

all these latter transducers are finite or not depends on whether the zero

automaton is finite or not and this question is analysed and solved by com-

binatorial and algebraic methods which depend on the base.

We begin with the classical — one could even say basic — case where

the base is a positive integer. It will give us the opportunity to state a

number of elementary properties which we nevertheless prove in detail for

they will appear again in the other forthcoming parts. The zero automaton

is easily seen to be finite, and thus so are finite the adder and the various

normalisers. The same zero automaton is the socle on which we build the

local adder for the Avizienis system, and the normaliser for the non-adjacent

forms which yield representations of minimal weight.

The first and main non-classical case that will retain our attention is the

one of numeration systems often called non-standard : a non-integer real β

is chosen as a base and the (real) numbers are written in this base; a rather

common example is when β is equal to the Golden Ratio ϕ. Such systems

are also often called beta-numeration in the literature. In contrast with

the integer-base case, numbers may have several distinct representations,

even on the canonical alphabet, and the expansion of every number is com-

puted by a greedy algorithm which produces the digits from left to right,

that is, most significant digit first. The arithmetic properties of β, that is,

which kind of algebraic integer it is, are put into correspondance with the

properties of the system such as for instance the rationality† of the set of

expansions. The main result in that direction is that the zero automaton

is finite if, and only if, β is a Pisot number (Theorem 2.3.31).

Another property that is studied is the possibility of defining from β a

sequence of integers that will be taken as a basis and that will thus yields

† We use ‘rational set’ as a synonym of ‘regular set’, see Section 1.3 and Section 2.6.1.
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a numeration system (for the positive integers), in the very same way as

the Fibonacci numeration system is associated with the Golden Ratio. Al-

though restricted to the integers, these systems happen to be more difficult

to study than those defined by a real base, and the characterisation of those

for which the set of expansions is rational is more intricate (Theorem 2.3.57).

Section 2.4 is devoted to canonical numeration systems in algebraic num-

ber fields. In these systems, every integer has a unique finite expansion,

which is not computed by a greedy algorithm but by a right-to-left algo-

rithm, that is, by an algorithm which computes the least significant digit

first. The main open problem in this area is indeed to characterise such

canonical numeration systems. A beautiful result is the characterisation

of Gaussian integers as a base of canonical numeration systems (Theo-

rem 2.4.12).

The third and last kind of numeration systems which we consider is the

one of systems with a base that is not an algebraic integer but a rational

number. First the non-negative integers are given an expansion which is

computed from right to left, as in the case of canonical numeration sytems.

The set of all expansions is not a rational language anymore; it is a very

intriguing set of words indeed, a situation which does not prevent the zero

automaton to be still finite, and so is the digit-converter from any alpha-

bet to the canonical one. The expansions of real numbers are not really

‘computed’ but defined a priori from the expansions of the integers. The

matter of the statement is thus reversed and what is to be proved is not

that we can compute the expansion of the real numbers but that every real

number is given a representation (at least one) by this set brought from

‘outside’ (Theorem 2.5.23). This topic has been explored by the authors in

a recent paper (Akiyama, Frougny, and Sakarovitch 2008) and is wide open

to further research.

In Section 2.6 (before the Notes section) we have gathered definitions†
and properties of finite automata and transducers that are not specific to

the results on numeration systems but relevant to more or less classical

parts of automata theory, and currently used in this chapter.

From this presentation, it appears that we are interested in the way

numbers are written rather than in the definition of set of numbers via finite

automata. And yet the latter has been the first encounter between finite

automata theory and number representation, namely, Cobham’s Theorem

(we mention it only as it stands in the background of the proof that the

map betwen the representations of numbers in different bases cannot be

† Notions defined in that Section 2.6 are shown slanted in the text.
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realised by finite automata). Speaking of this theorem, it is interesting to

quote this seminal paper (Cobham 1969):

This adds further evidence [. . . ] that, insofar as the recognition of set of numbers
goes, finite automata are weak, and somewhat unnatural.

We think, and we hope the reader will be convinced, that the matter de-

veloped in this chapter supports the view that finite automata are on the

contrary a natural and powerful concept for studying numeration systems.

2.2 Representation in integer base

We first recall how numbers, integers or real numbers, may be represented

in an integer base, like 2 or 10, that is, in the way that everyone does, in

the everyday life. The statements and proofs in these first two subsections

are thus simple and well-known, when not even trivial. We nevertheless

write them explicitely for they allow to see how the several generalisations

to come in the sections below differ from, and are similar to, the basic case

of integer base numeration systems.

Let p be a fixed integer greater than 1, which we call the base (in our

running examples, we choose p = 2, or p = 3 when 2 differs from the

general case). The canonical alphabet of digits Ap associated with p is

Ap = {0, 1, . . . , p− 1} . The integer p together with Ap defines the base p

numeration system.

Note that Ap is naturally (and totally) ordered and thus Ap
∗ is naturally

(and totally) ordered by the lexicographic and by the radix orders.

2.2.1 Representation of integers

The choice of the base p implicitly gives every word of Ap
∗ an integer value,

via the evaluation map πp: for every word w of Ap
∗, we have

w = ak ak−1 · · · a1 a0 7−→ πp (w) =
k∑

i=0

aip
i .

This definition of πp implies that numbers are written with the most sig-

nificant digit on the left.†

Lemma 2.2.1 The map πp is injective on Ap
k, for every integer k.

† A convention which certainly is the most common one, even in languages writ-
ten from right to left, but not universal, in particular among computer scientists
(see (Cohen 1981) on the endianness problem).
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Proof Let u = ak−1ak−2 · · · a0 and v = bk−1bk−2 · · · b0 be two distinct

words of Ap
∗ of length k such that πp (u) = πp (v) . Hence

k−1∑

i=0

ai p
i −

k−1∑

i=0

bi p
i = 0 and therefore P (X) =

k−1∑

i=0

(ai − bi)X i

is a polynomial in Z[X ] vanishing at X = p . By Gauss Lemma on prim-

itive polynomials, P (X) is divisible by the minimal polynomial X − p .

Contradiction, since |a0 − b0| is strictly smaller than p.

The map πp is not injective on the whole Ap
∗ since πp

(
0hu

)
= πp (u)

holds for any u in Ap
∗ and any integer h. On the other hand, Lemma 2.2.1

implies that this is the only possibility and we have:

πp (u) = πp (v) and |u| > |v| =⇒ u = 0h v with h = |u| − |v| .

Conversely, every integer N in N can be given a representation as a word

in Ap
∗ which, thanks to the foregoing, is unique under the condition it does

not begin with a zero. This representation can be computed in two different

ways, which we call, for further references, the greedy algorithm — which

computes the digits from left to right, that is, most significant digit first —

and the division algorithm — which computes the (same) digits from right

to left, that is, least significant digit first.

The greedy algorithm. Let N be any positive integer. There exists a

unique k such that pk ≤ N < pk+1 . We write Nk = N and, for every i,

from i = k to i = 0,

ai =

⌊
Ni

pi

⌋
and Ni−1 = Ni − ai p

i .

Then, ai is in Ap, ak is different from 0 and Ni < pi . It holds:

N =

k∑

i=0

ai p
i = πp (ak · · · a0) .

The division algorithm. Let N be any positive integer. Write N0 =

N and, for i > 0, write

Ni = pNi+1 + bi (2.1)

where bi is the remainder of the division of Ni by p, and thus belongs to Ap.

Since Ni+1 is strictly smaller than Ni, the division (2.1) can be repeated

only a finite number of times, until eventually N` 6= 0 and N`+1 = 0 for
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some ` (and thus b` 6= 0). The sequence of successive divisions (2.1) for

i = 0 to i = ` produces the digits b0, b1, . . . , b`, and it holds:

N =
∑̀

i=0

bi p
i = πp (b` · · · b0) .

The integer N can also be written as

N = ((· · · (b` p+ b`−1) · · · )p+ b1)p+ b0 ,

that is, as the evaluation of a polynomial by a Horner scheme. By

Lemma 2.2.1, k = ` and ak · · ·a0 = b` · · · b0 . We have thus proved the

following.

Theorem 2.2.2 Every non-negative integer N has a unique representation

in base p which does not begin with a zero. It is called the p-expansion of N

and denoted by 〈N〉p.

Note that the representation of 0 is the empty word ε. It also follows

that the set of p-expansions is the rational language

Lp = {〈N〉p | N ∈ N} = Ap
∗ \ 0Ap

∗ = {Ap \ {0}}Ap
∗ ∪ {ε} .

The map πp is not only a bijection between Lp and N but also a morphism

of ordered sets (when Lp is ordered by the trace of the radix order ≺
on Ap

∗).

Proposition 2.2.3 For all n and m in N, 〈n〉p ≺ 〈m〉p holds if, and only

if, n < m .

Remark 2.2.4 It also follows from Proposition 2.2.3 that for any two

words v and w of Ap
∗ and of the same length, v ≺ w if, and only if,

πp (v) < πp (w) .

A first finite transducer: the divider by q. Let q be a fixed positive

integer and let [q] = {0, . . . , q−1} be the set of remainders modulo q. For

every integers s and a, the Euclidean division by q yields unique integers b

and r such that

ps+ a = q b+ r . (2.2)

If s is in [q] and a is in Ap, then b is in Ap — and by definition r is in [q].

Equation (2.2) thus defines a transducer:

Qp,q = ( [q], Ap, Ap, E, {0}, [q] ) with E = {
(
s, (a, b), r

)
| ps+ a = q b+ r} .
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0 2 1 3 4
1 |1

1 |0
1 |0

1 |1

1 |10 |0
0 |0 0 |1

0 |1

0 |0

Fig. 2.2. The divider Q2,5.

The transducer Qp,q is sequential. (Indeed, Qp,q is co-sequential as well if p

and q are co-prime.) Figure 2.2 shows Q2,5.

The realisation of division by finite automata (together with arithmetic

operations modulo q) is exactly what is behind computation rules such as

the casting out nines or divisibility criteria such as the divisibility by 11 (a

number is divisible by 11 if, and only if, the sum of digits of odd rank is

equal to the sum of digits of even rank). That such criterium exists in every

base for any fixed divisor was already observed by Pascal (cf. (Pascal 1654,

pp. 84–89), see also (Sakarovitch 2003, Prologue)).

2.2.2 The evaluator and the converters

Finite automata really come into play with number representation when we

allow ourselves to use sets of digits larger than the canonical alphabet. Let p

be the base fixed as before but the digits be a priori any integer, positive or

negative. Consider then the (doubly infinite) automaton Zp whose states

are the integers, that is, Z, which reads (from left to right) the numbers

(thus written on the ‘alphabet’ Z), and which runs in such a way that,

at every step of the reading, the reached state indicates the value of the

portion of the number read so far. The initial state of Zp is thus 0 and its

transitions are of the form:

∀s, t, a ∈ Z s
a−−→
Zp

t if, and only if, t = ps+ a , (2.3)

from which we get the expected behaviour:

∀w ∈ Z∗ 0
w−−→
Zp

πp (w) .

It follows from (2.3) that Zp is both deterministic and co-deterministic. It

is logical to call Zp the evaluator.

In fact, we shall consider only finite parts of Zp. First, we restrict our

alphabet to be a finite symmetrical partBd of Z: Bd = {−d, . . . , d} where d

is a positive integer, d ≥ p− 1 and thus Ap ⊂ Bd . Second, we choose 0 as
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a unique final state and we get an automaton Zp,d = ( Z, Bd, E, {0}, {0} )

where the transitions in E are those defined by (2.3). This automaton

accepts thus the writings of 0 (in base p and on the alphabet Bd) and we

call it a zero automaton. It is still infinite but we have the following.

Proposition 2.2.5 The trim part of Zp,d is finite and its set of states

is H = {−h, . . . , h} where h is the largest integer (strictly) smaller

than d/(p− 1).

Proof As Bd contains Ap and is symmetrical, every z in Z is accessible

in Zp,d.

If m is a positive integer larger than, or equal to, d/(p − 1), the ‘small-

est’ reachable state from m is mp − d, which is also larger than, or equal

to, d/(p − 1): m is not co-accessible in Zp,d and the same is true if m is

smaller than, or equal to, −d/(p− 1).

If m is a positive integer smaller than d/(p − 1), then the integer k =

m(p−1)+1 is smaller than, or equal to, d, and m
k−−→ (m−1) is a transition

in Zp,d. (A signed digit −k is denoted by k.) Hence, by induction, a path

from m to 0 in Zp,d. The same is true if m is a negative integer strictly

larger than −d/(p− 1).

Figure 2.3 shows Z2,2. By definition, the trim part of Zp,d is the strongly

connected component of 0. From now on, and unless otherwise stated,

we let Zp,d denote the automaton reduced to its trim part only. The au-

tomaton Zp,d is not so much interesting in itself but as the core of the

construction of a series of transducers that transform representations of a

number into others and that we call by the generic name of digit-conversion

transducers, or converters for short.

4̄ 3̄ 2̄ 1̄ 0 1 2 3 4

2 1 0 1̄ 2̄

2̄1̄012

2 1 0

2

2̄1̄0

2̄

2 1 0 1̄ 2̄

Fig. 2.3. A finite view on Z2,2. The part which is not co-accessible is shown in
grey and dashed.

2.2.2.1 The converters and the normalisers

We need some more elementary notation and definitions. From any two

alphabets of integers C and A, we build the alphabet C +A (resp. C −A)
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of all sums (resp. differences):

C +A = {z | ∃c ∈ C, ∃a ∈ A z = c+ a} ,
C −A = {z | ∃c ∈ C, ∃a ∈ A z = c− a} .

Let u = ck−1ck−2 · · · c0 and v = ak−1ak−2 · · · a0 be two words of length k

of C∗ and A∗ respectively. The digitwise addition of u and v is the word

u ⊕ v = sk−1sk−2 · · · s0 of (C + A)∗ such that si = ci + ai (resp. the

digitwise subtraction is the word u	 v = dk−1dk−2 · · · d0 of (C −A)∗ such

that di = ci − ai), for every i, 0 ≤ i < k. If u and v have not the same

length, the shortest is silently padded on the left by 0’s and both u ⊕ v

and u	 v are thus defined for all pairs of words. In any case, the following

obviously holds:

πp (u⊕ v) = πp (u) + πp (v) and πp (u	 v) = πp (u)− πp (v) .

Let Bd = {−d, . . . , d} be the (smallest) symmetrical part of Z that

contains C − A: d = max{|c− a| | c ∈ C, a ∈ A} . From Zp,d =

(H,Bd, E, {0}, {0} ) , we then define a letter-to-letter (left) transducer

Cp(C×A) = (H,C,A, F, {0}, {0} ) , whose transitions are defined by

s
c|a−−−−−−→

Cp(C×A)
t if, and only if, s

c−a−−−−→
Zp,d

t , (2.4)

for every s and t in H , c in C, and a in A, that is, if, and only if,

ps+ c = t+ a . (2.5)

Both (2.4) and (2.5) show that a given transition in Zp,d may give rise to

no or several transitions (or to a transition with several labels) in Cp(C×A).

This transducer relates every u in C∗ with all words in A∗ with the same

length and same value in base p, as stated by the following.

Proposition 2.2.6 Let Cp(C ×A) be the digit-conversion transducer in

base p for the alphabets C and A. For all u in C∗ and all v in A∗,

(u, v) ∈ |||Cp(C×A)||| if, and only if, πp (u) = πp (v) and |u| = |v| .

Proof If (u, v) is in |||Cp(C×A)|||, then |u| = |v| as Cp(C×A) is letter-to-

letter and, on the other hand, the successful computation labeled by (u, v)

in Cp(C×A) maps onto a successful computation labeled by u	 v in Zp,d

and thus πp (u	 v) = 0, that is, πp (u) = πp (v).

Conversely, if u = ck−1ck−2 · · · c0 and v = ak−1ak−2 · · ·a0 are in C∗

and A∗ respectively, u	 v is in Bd
∗ and if πp (u) = πp (v), then u	 v is the

label of a successful computation of Zp,d, every transition (s, di, t) of which
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is the image of a transition (s, ci, ai, t) in Cp(C×A). These transitions form

a successful computation whose label is (u, v).

If A = Ap, Cp(C×Ap) is input co-deterministic, or co-sequential, since

ps+ c = t+ a and ps′ + c = t+ a′ would imply p (s− s′) = a− a′ , and

then s = s′ as both a and a′ are in Ap. Every word u in C∗, padded on the

left by the number of 0’s necessary to give it the length of 〈πp (u)〉p is thus

the input of a unique successful computation in Cp(C×Ap) whose output is

the unique p-expansion of πp (u).

This is the reason why Cp(C×Ap) is rather called normaliser (in base p

and for the alphabet C), denoted by Np(C), and more often described

by its transpose, a letter-to-letter right transducer, which is thus input

deterministic, or sequential. In order to keep (2.5) valid, we also change

the sign of the states in the transpose. Finally, every state is given a final

function which outputs the p-expansion of the value of the state: it is

equivalent to reaching the state 0 by reading enough leading 0’s on the

input. In conclusion, we have shown the following.

Theorem 2.2.7 Normalisation in base p for any input alphabet of digits

is realised by a finite letter-to-letter sequential right transducer.

Figure 2.4 shows N2(C2) and its transpose, where C2 = A2 + A2 =

{0, 1, 2} is the alphabet on which are written words obtained by digitwise

addition of two binary expansions of integers: N2(C2) realises the addition

in base 2.

1̄ 0 1

2 |0 1 |0 , 2 |1

0 |1

1 |0 , 2 |1 0 |0 , 1 |1 0 |1

(a) The transducer N2(C2),

1 0

2 |0

0 |1

1 |0 , 2 |1 0 |0 , 1 |1

(b) its trim transpose,

1 0

|1

2 |0

0 |1

1 |0 , 2 |1 0 |0 , 1 |1

(c) with final function.

Fig. 2.4. A normaliser in base 2.

2.2.2.2 The signed-digit representation

The zero automaton uses negative digits as well as positive ones; we can

make use of these digits not only as computational means but for the rep-

resentation of numbers as well.

Let us first remark that if an alphabet of integers A contains a complete

set of representatives of Z/pZ, all of which are smaller than p in modulus,

then the division algorithm (2.1) may be run with digits taken in A instead

of Ap in such a way that it terminates, which proves that every positive
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integer has a p-representation as a word in A∗, that is, πp : A∗ → N is

surjective. On the other hand, πp is injective if, and only if, there is at most

one digit in A for every representatives of Z/pZ. Both conditions are met

if p = 2q + 1 is odd and A is the symmetric alphabet Bq = {−q, . . . , q} .

The first case, p = 3 and A = {−1, 0, 1} , yields a beautiful numeration

system, celebrated in (Knuth 1998). But now we are more interested in

systems were numbers may have indeed several representations. In what

follows, we choose A to be a symmetric alphabet Bh:

Bh = {−h, . . . , h} with h ≥
⌊
p+ 1

2

⌋
.

As Bh is symmetrical, every integer, positive and negative, has a p-

representation as a word in Bh
∗. Equation (2.3) and the construction of Zp

immediately yield the following.

Proposition 2.2.8 In base p, and with the symmetric digit alphabet Bh,

the sign of a number is always given by (the sign of) its left-most digit if,

and only if, h is less than p.

More important, πp : Bh
∗ → Z is not only surjective, but also not in-

jective. The converter Cp(Bh×Bh) maps every word in Bh
∗ to all words

of Bh
∗ that have the same value (modulo some possible padding on the left

by 0’s): we call it the redundancy transducer (in base p on the alphabet Bh)

and denote it by Rp(Bh). If h =
⌊

p+1
2

⌋
, it follows from Proposition 2.2.5

that Rp(Bh) has 3 states. Figure 2.5 shows R2(B1) and R3(B2).

1̄ 0 1

1 | 1̄ 0 | 1̄ , 1 |0

1̄ |11̄ |0 , 0 |1

0 | 1̄ , 1 |0 0 |0 , 1 |1 , 1̄ | 1̄ 1̄ |0 , 0 |1

(a) The transducer R2(B1).

1̄ 0 1

2̄ |0 , 1̄ |1 , 0 |2
2̄ | 2̄ , 1̄ | 1̄

0 |0 , 1 |1 , 2 |2 0 | 2̄ , 1 | 1̄ , 2 |0

2 | 1̄ , 1 | 2̄
2̄ | 1̄ , 1̄ |0
0 |1 , 1 |2

1̄ |2 , 2̄ |11̄ | 2̄ , 0 | 1̄
1 |0 , 2 |1

2 | 2̄

2̄ |2

(b) The transducer R3(B2).

Fig. 2.5. Two redundancy transducers.

This symmetric representation of numbers is an old folklore.† It has

been given a renewed interest in computer arithmetic for the redundancy

† It was known (at least) as early as Cauchy who advocated such system for p = 10
and h = 5 with the argument that it makes the learning of addition and multiplication
easier: the size of the tables is rougly divided by 4 (see (Cauchy 1840)).
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in the representations allows to improve the way operations are performed,

as we shall see now. The following is to be found in (Avizienis 1961) for

bases larger than 2, in (Chow and Robertson 1978) for the binary case —

although the original statements and proofs are not formulated in terms of

automata.

Theorem 2.2.9 In base p ≥ 3 with the symmetric digit alphabet Bh, where

h =
⌊

p
2

⌋
+1 , the addition may be realised by a 1-local letter-to-letter trans-

ducer, and by a 2-local one if p = 2 and h = 1.

Note that a ‘1-local letter-to-letter transducer’ is by definition a ‘sequen-

tial letter-to-letter transducer’, that a ‘2-local letter-to-letter transducer’ is

equivalent to a ‘sequential transducer’ but not necessarily to a ‘sequential

letter-to-letter transducer’ (cf. Section 2.6).

Proof We assume first that p ≥ 3; the cases of odd p = 2q + 1 and of

even p = 2q will induce slight variations in the definitions but the core will

be the same. In both cases, h = q + 1. The alphabet for digitwise addition

is B2h with 2h = p+ 1 if p is odd, 2h = p+ 2 if p is even. Let

Vp =

{
{−(h− 1), . . . , h− 1} if p is odd,

{−(h− 2), . . . , h− 1} if p is even.

In both cases, CardVp = p and is a set of representatives of Z/pZ. Not only

we have Vp ⊂ Bh, but for any s in Vp, s+ 1 and s− 1 belong to Bh as well

(this is the condition which is not verified when p = 2).

Let Vp be the subautomaton of Zp, with Vp as set of states, 0 as initial

state, and every state is final. We turn Vp into a transducerWp with input

alphabet B2h. Every transition

s
d−−→
Vp

t = ps+ d gives

s
t|ps−−−→
Wp

t and also s
t+p|p(s+1)−−−−−−−−→

Wp

t or s
t−p|p(s−1)−−−−−−−−→

Wp

t ,

or both, according to whether t+p, t−p, or both, are in B2h. By construc-

tion, the input automaton of Wp is

(i) deterministic,

(ii) complete (over the alphabet B2h), and

(iii) 1-local (that is, the end of a transition is determined by the label).

Since t = ps+d,Wp is a converter and if (u, v) is the label of a computation

of Wp which (begins in 0 and) ends in t, then

πp (u) = πp (v) + t .
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Let now Wp
′ be the transducer obtained from Wp by replacing every tran-

sition

s
m|pn−−−−→
Wp

t by s
m|n−−−−→
Wp

′
t ,

and by setting the final function T as T (t) = t for every t in Vp. By

construction, and the above remark, the output alphabet of Wp
′ is Bh.

If (u, v′) is the label of a computation of Wp
′ which (begins in 0 and) ends

in t, then

πp (u) = p πp (v′) + t = πp (v′ t) .

As v′ t is the output of Wp
′ for the input u, Wp

′ answers the question.

For p = 2, the foregoing construction, starting from V2 = {0, 1} , works

perfectly well, but for the fact that W2
′ contains one, and only one, transi-

tion whose output is not in B1:

1
2|2−−−→
W2

′
0 .

The same construction is then carried out again, but starting from V2 =

{1̄, 0} , which yields a transducer W2
′ which contains one, and only one,

transition whose output is not in B1:

1̄
2̄|2̄−−−→
W2

′
0 .

The composition W2
′′ = W2

′
◦W2

′ is a 2-local letter-to-letter sequential

transducer in which no transition has an output outside B1 since no tran-

sition in W2
′ has a transition with output 2̄ and no transition in W2

′ with

input 2 has an output outside B1: W2
′′ answers the question.

Figure 2.6 shows W3
′ and W2

′′.

1̄ 0 1

| 1̄ |0 |1

3̄ | 2̄ , 0 | 1̄ , 3 |0 2̄ | 1̄ , 1 |0 , 4 |1

3̄ |0 , 0 |1
3 |2

4̄ | 1̄ , 1̄ |0
2 |1

4̄ | 2̄ , 1̄ | 1̄ , 2 |0 3̄ | 1̄ , 0 |0 , 3 |1 2̄ |0 , 1 |1 , 4 |2

2̄ | 2̄ , 1 | 1̄ , 4 |0

4̄ |0 , 1̄ |1 , 2 |2

(a) The transducer W3
′.

00 1̄1

01

1̄0

|00
|01̄

|11̄

| 1̄0

0 |0 1 |0

2 |0 , 2̄ |0

1 |0

2 |1 , 2̄ |0

0 | 1̄

2 |0 , 2̄ | 1̄

1 |0

1̄ | 1̄

1 |1

1̄ | 1̄

0 |0

1̄ |0

2 |1 , 2̄ |0

1 | 1̄

0 |1

(b) The transducer W2
′′.

Fig. 2.6. Two local adders.
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Remark 2.2.10 The same construction as the one for p = 2 can be carried

out for any even p = 2q and would yield a 2-local automaton for the

addition if the numbers are written on the smaller alphabet Bh with h = q.

2.2.2.3 The minimal weight representation

Multiplication by a fixed integer obviously falls in the case of normalisa-

tion but, in contrast with addition, multiplication (between two numbers)

cannot be realised by a finite automaton. However, redundant alphabets

and redundancy transducers are not irrelevant to the subject for they allow

useful preprocessing to efficient multiplication algorithms.

Let A be a digit alphabet and u = uk uk−1 · · ·u1u0 be in A∗ with the ui

in A. The weight of u is the absolute sum of digits ‖u‖ =
∑k

i=0 |ui| . The

Hamming weight of u is the number of non-zero digits in u. Of course,

when A ⊆ {−1, 0, 1}, the two definitions coincide; as, for sake of simplicity,

we consider here this case only, we do not introduce another notation and

speak simply of ‘weight’.

The multiplication of two numbers represented by u and v respectively

amounts to a series of addition of u with shifted copies of u itself, as many

times as there are non-zero digits in v: the smaller the weight of v, the more

efficient the multiplication by πp (v). Hence the interest for representation

of minimal weight. The following statement and proof is an ‘automata

translation’ of a classical description of (binary) representations of minimal

weight as ‘non-adjacent form’ due to Booth (Booth 1951) and Reitwies-

ner (Reitwiesner 1960).

Theorem 2.2.11 The computation of a 2-representation of minimal weight

over the alphabet B1 = {−1, 0, 1} from the 2-expansion of an integer x is

realised by a finite sequential right transducer. The result is a representation

with no adjacent non-zero digits.

Remark 2.2.12 The study of minimal weight representations goes on with

the computation of the mean weight (that gives an evaluation of the ben-

efits of the construction). These minimal weight representations have also

applications to cryptography. See also Section 9.2.4.4.

2.2.3 Representation of reals

Real numbers from the interval [0, 1) are traditionally represented as infinite

sequences of digits (infinite on the right), that is, by elements of Ap
N. By

convention, and although N contains 0, we consider, in this context and for
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sake of simplicity of the writing, that an element u of Ap
N is a sequence of

digits whose indices begin with 1: u = (ui)i≥1 where every ui is in Ap.

The set Ap
N is naturally a topological space equipped with the (total)

lexicographic order : for u and v in Ap
N, u < v if, and only if, if w = u ∧ v

is the longest common prefix to u and v, then u = wau′ and v = wbv′

with a and b in Ap and a < b. With our convention, the evaluation map,

still denoted by πp, gives every word u of Ap
N a real value:

u = u1 u2 · · · 7−→ πp (u) =

∞∑

i=1

ui p
−i .

When finite and infinite words are mixed in the same context, the latter are

prefixed with the radix point inside the function πp. For instance, it holds:

∀u = (ui)i≥1 ∈ Ap
N πp (.u) = lim

n→+∞
1

pn
πp (u1 u2 · · ·un) , (2.6)

∀u ∈ Ap
N , ∀w ∈ Ap

∗ πp (.wu) =
1

p|w| (πp (w) + πp (.u)) . (2.7)

Proposition 2.2.13 The map πp : Ap
N → [0, 1] is a continuous and order-

preserving function. Moreover, for u and v in Ap
N, u < v, and w = u ∧ v ,

πp (u) = πp (v) if, and only if, u = wa (p−1)ω and v = w (a+1)0ω .

Proof Let us first make the obvious remark — which will be used silently

in the sequel — that if u and v are such that for every i, ui ≤ vi and if

there exists at least one j such that uj 6= vj , then πp (u) < πp (v).

Next, the not less obvious identity

+∞∑

i=1

(p− 1)p−i = (p− 1)

(
1
p

1− 1
p

)
= 1 (2.8)

implies in particular that πp

(
Ap

N

)
⊆ [0, 1] .

The set Ap
N is a metric space with d (u, v) = 2−|u∧v| if u 6= v

(and d (u, u) = 0 of course). Then, again by (2.8), |πp (u)− πp (v)| ≤
2p−(|u∧v|−1) and πp is Lipschitz, hence continuous.

Let then u and v be in Ap
N, u < v, and let k be the smallest index such

that uk 6= vk , that is, uk ≤ vk − 1. Let

u′ = u1u2 · · ·uk−1uk p−1p−1 · · · and v′ = v1 v2 · · ·uk−1 (uk + 1)00 · · ·

By the foregoing, πp (u′) = πp (v′) and, if u 6= u′, then πp (u) < πp (u′), and

if v 6= v′, then πp (v′) < πp (v), which shows that πp is order-preserving.
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Let x be a non-negative real number. If x ≥ 1, a first way for represent-

ing x is to treat its integral part bxc and its fractional part {x} separately, to

compute 〈bxc〉p as we have done in the previous section, to compute 〈{x}〉p
as we shall see below, and to combine them with the radix point:

〈x〉p = 〈bxc〉p.〈{x}〉p .

Another way is to determine the (unique) integer k such that pk−1 ≤
x < pk first, to consider the real y =

x

pk
which belongs to [0, 1), to com-

pute 〈y〉p = u1u2 · · · and to recover the representation of x by setting the

radix point at the right place: 〈x〉p = u1u2 · · ·uk.uk+1uk+2 · · · . We shall

obviously take the second option, and from now on consider real numbers

from [0, 1) only. Given such an x in [0, 1) which is then likely to have a p-

representation which is an infinite sequence on the right, there is no hope to

have an algorithm which computes the digits from right to left, and we are

left with the right algorithm which computes the digits from left to right.

The greedy algorithm. Let x be in [0, 1). Write z0 = x and, for

every i ≥ 1, let

ui = bpzi−1c and zi = {pzi−1} . (2.9)

Every ui is in Ap, and it holds

z0 = u1 p
−1 + z1 p

−1 = u1 p
−1 + u2 p

−2 + z2 p
−2 = · · · =

+∞∑

i=1

ui p
−i , (2.10)

that is, the infinite word u = (ui)i≥1 in Ap
N is a p-representation of x. It

is the p-expansion of x, denoted by 〈x〉p or dp (x) (when a more functional

notation is needed). The computation described by (2.9) is refered to as

the greedy algorithm.

By convention (and by abuse), we say that a p-representation u is finite

if it ends with the infinite word 0ω: u = w 0ω with w in Ap
∗ (and indeed

the finite word w is sufficient to compute πp (u)). An x in [0, 1) is said to

be p-decimal if x has a finite p-representation, that is, if, and only if, x is

an integer divided by a (sufficiently large) power of p.

Corollary 2.2.14 The map πp : Ap
N → [0, 1] is a surjective function.

An x in [0, 1) has more than one p-representation in Ap
N if, and only if,

it is p-decimal, in which case it has only two of them, and its p-expansion

is the finite one, which is larger in the lexicographic order than the other

infinite one.
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It also follows that the set of p-expansions is the rational language (of

infinite words):

Dp = {〈x〉p | x ∈ [0, 1)} = Ap
N \ Ap

∗ (p−1)ω .

Figure 2.7 shows a finite Büchi automaton which recognises D2.

1

0

0 1

Fig. 2.7. A finite Büchi automaton for the language of 2-expansions D2.

A first finite transducer over infinite words: the divider by q.

Let us consider the transducer Qp,q of Section 2.2.1 again (q is a fixed

integer and [q] the set of remainders modulo q):

Qp,q = ( [q], Ap, Ap, E, {0}, [q] ) with E = {
(
s, (a, b), r

)
| ps+ a = q b+ r} ,

where a and b are in Ap and s and r in [q] (see Figure 2.2). We are now

interested in the infinite computation of Qp,q.

Let u be the p-expansion of an x in [0, 1), let c be the computation of Qp,q

with input u (it exists as Qp,q is input-complete and is unique as Qp,q is

input-deterministic), and let v be the output of c, in Ap
N. Let r0 = 0 and

for every i ≥ 1 it holds:

pri−1 + ui = q vi + ri .

Equation (2.10) then becomes

x = u1 p
−1 + z1 p

−1 = q v1 p
−1 + p−1 (r1 + z1) = · · · = q

+∞∑

i=1

vi p
−i ,

that is, πp (u) = q πp (v) . And Qp,q realises the division by the integer q

over the p-representations of the reals of [0, 1).

As a rational number is the quotient of an integer by another integer, and

since Qp,q is input-deterministic, a computation whose input is ultimately a

sequence of 0’s ends in a circuit, therefore the description of the division as

a finite sequential transducer is a proof of the following classical statement.

Proposition 2.2.15 The p-expansion of a rational number r/q, in any

integer base p, is eventually periodic (of period less than q).
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The zero (Büchi) automaton and (Büchi) converters

The ‘zero-automaton’ for real number representations is basically the

same as the one we have built for the representations of the integers, that

is, it is based upon the automaton Zp (cf. Section 2.2.2). As above, let

Bd = {−d, . . . , d} be a finite symmetrical part of Z with d ≥ p− 1 .

Proposition 2.2.16 An infinite word u in Bd
N has value 0 in base p if, and

only if, it is accepted by the Büchi automaton Z ′
p,d = (H ′, Bd, E, {0}, H ′ )

with H ′ = {−h′, . . . , h′} where h′ is the largest integer smaller than, or

equal to, d/(p− 1).

Proof By the definition of Z ′
p,d, every infinite word u that labels an infinite

computation in Z ′
p,d is accepted by Z ′

p,d. For every (finite) prefix w of u,

|πp (w)| ≤ h′ and then, by (2.6), πp (.u) = 0 .

Conversely, let u in Bd
N which does not label a computation in Z ′

p,d, that

is, there exists a prefix w of u such that

0
w−−→
Zp

t = πp (w) with t > d/(p− 1) .

We have, on the one hand, πp (.u) ≥ πp

(
.wd

ω)
and, on the other hand,

πp

(
.wd

ω)
=

1

p|w|

(
t− d

p− 1

)
> 0 .

(The case t < −d/(p− 1) is identical.)

The proof also yields the characterisation of Z ′
p,d as the (full) Z ′

p,d re-

stricted to its (non-trivial) strongly connected components. Figure 2.8 shows

Z ′
2,1 and Z ′

2,2.

1̄ 0 1

1

1̄

1 0 1̄

(a) The automaton Z ′
2,1.

2̄ 1̄ 0 1 2

2 1 0

2̄1̄0

2

2̄

2 1 0 1̄ 2̄

(b) The automaton Z ′
2,2.

Fig. 2.8. Two ‘zero automata’ for binary representations of reals.

From the zero automaton for real representations, one derives converters

and normalisers, as in the case of the representations of integers, but for the

point that not every word in Ap
N is a p-expansion and that there exists thus

a distinction between a converter to the canonical alphabet and a normaliser
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to the same alphabet. For instance, Figure 2.9 shows these converter and

normaliser from and to the canonical alphabet, in the binary case.

1̄ 0 1

1 |0

0 |1

1 |0 0 |0 , 1 |1 0 |1

(a) The automaton C2(A2×A2).

0 |0

1 |1

1 |0

0 |1
1 |1

0 |0

1 |0

0 |1
0 |1

1 |0

(b) The automaton N2(A2).

Fig. 2.9. The converter and normaliser over the canonical alphabet for binary
representations of reals.

2.2.4 Base changing

As soon as we want to compare the representation of integers in different

bases, finite automata show a kind of weakness, that is, no finite transducers

exist in general which transform the p-expansion of an integer N into its

q-expansion. This follows in fact from the fundamental theorem, due to

Alan Cobham, which we refered to in the introduction and which has been

presented in Chapter 1 (see Theorem 1.5.5).

This deep result obviously implies, and stays behind, the fact that no

finite transducer T may relate the expansions of integers in base p and

in base q, for multiplicatively independent p and q. For, if there was one

such T , the image of the p-expansions of a p-recognisable set X by T would

be a rational set of Aq
∗ and X would thus be q-recognisable as well. It is

not necessary however to establish Cobham’s Theorem in order to prove

the non-existence of such a transducer T . For the latter, it is sufficient

for instance to prove that the set of powers of 2 is not 3-recognisable — a

simple, and classical, exercise (see (Eilenberg 1974)).

On the other hand, every integer in {0, 1, . . . , pk − 1} has a p-

representation which is a word of Ap
∗ of length k (by padding on the left

with enough 0’s) and this defines a morphism τ from Apk
∗ to Ap

∗ such that

πp

(
τ
(
〈N〉pk

))
= N for every N in N. Using inversion and composition

of finite transducers, we then get the following.

Proposition 2.2.17 If p and q are two multiplicatively dependent positive

integers, then there exists a finite transducer from Ap
∗ to Aq

∗ which maps

the p-expansion of every positive integer onto its q-expansion.
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Corollary 2.2.18 If p and q are two multiplicatively dependent positive

integers, then the p-recognisable sets and q-recognisable sets of positive in-

tegers coincide.

2.3 Representation in real base

This section is about the so-called beta-expansions where the base is a real

number β > 1. By a greedy algorithm producing the most significant digit

first, every positive real number is given a β-expansion, which is an infinite

word on a canonical alphabet of integer digits. The main difference with the

case where β is an integer is that a number may have several representations

on the canonical alphabet, the greedy expansion being the greatest in the

lexicographic order.

The set of greedy β-expansions forms a symbolic dynamical system, the β-

shift, and we start this chapter by establishing some properties of symbolic

dynamical systems defined by means of the lexicographic order, and not

related to numeration systems. From this, we derive some properties of

the β-shift. We then describe several properties of β-expansions in the

important case where β is a Pisot number.

Instead of taking a base, which is a number, it is also possible to take a

basis, that is, a sequence of integers, like the sequence of Fibonacci numbers.

This allows to represent any non-negative integer. We study these systems

more particularly when the basis is a linear recurrent sequence and investi-

gate the conditions under which the set of greedy expansions is recognisable

by a finite automaton.

We also consider the problem of changing the basis and describe cases

where the conversion between the expansions in the two numeration systems

is realisable by a finite transducer.

2.3.1 Symbolic dynamical systems

Definitions for symbolic dynamical systems have been given in Chapter 1;

we briefly recall some of them as we adopt slightly different notation (see

also (Lothaire 2002, Chapter 1)). Let A be a finite alphabet. A word s in

AN avoids a set X ⊂ A+ if no factor of s is in X . Denote S(X) the set of

words of AN which avoid X .

A (one-sided) symbolic dynamical system, or subshift , is a subset of AN of

the form S(X) for some X ⊂ A+. Equivalently, it is a closed shift-invariant

subset of AN. In this chapter, the shift on AN is denoted σ, and is implicit

in all our notations.

A subshift S of AN is of finite type if S = S(X) for a finite set X ⊂ A+.
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A subshift S of AN is sofic if S = S(X) for a rational set X ⊂ A+, or,

equivalently, if L(S) is rational.

A subshift S of AN is coded if there exists a prefix code Y ⊂ A∗ such that

S = Y ω, or, equivalently, if the language of S is equal to the set of factors

of Y ∗, that is, L(S) = F (Y ∗), (Blanchard and Hansel 1986).

In the remaining of this section, A is a totally ordered alphabet.

Definition 2.3.1 A word v in AN is said to be a lexicographically shift

maximal word (lsm-word for short) if it is larger than, or equal to, any of

its shifted images: for every k ≥ 0, σk(v) ≤ v .

Definition 2.3.2 Let v = (vi)i≥1 in AN. We denote by

(i) v[n] the prefix of length n of v: v[n] = v1v2 · · · vn . By convention,

v[0] = ε .

(ii) Sv = {u ∈ AN | ∀k ≥ 0, σk(u) ≤ v} , the set of words in AN, all the

shifted images of which are smaller than, or equal to, v.

(iii) Dv = {u ∈ AN | ∀k ≥ 0, σk(u) < v} , the set of words in AN, all the

shifted images of which are smaller than v.

(iv) Yv = {v[n]a ∈ A∗ | ∀n ≥ 0, ∀a ∈ A, a < vn+1} .

Proposition 2.3.3 If v in AN is an lsm-word, then Sv is a subshift coded

by Yv.

Proof From their definition follows that Sv is shift-invariant and closed and

that Yv is a prefix code. Let w be in L(Sv); then w ≤ v[n] with n = |w|.
Either w = v[n] and thus a prefix of a word in Yv or w < v[n] and thus

of the form w = v1 · · · vn1−1a1w1, with a1 < vn1 and w1 ≤ v1 · · · v|w1|,
that is w = y1w1 with y1 in Yv and w1 in L(Sv). Iterating this process,

we see that w belongs to F (Y ∗
v ). Conversely, let w = (wn)n≥1 = y1y2 · · ·

be in Y ω
v , with yi in Yv. Then w < v. For each k, wkwk+1 · · · begins

with a word of the form vjk
vjk+1 · · · vjk+r−1ajk+r with ajk+r < vjk+r, thus

wkwk+1 · · · < vjk
vjk+1 · · · ≤ v, and thus w is in Sv.

Proposition 2.3.4 Let v be an lsm-word in AN. Then, the following con-

ditions are equivalent:

(i) the subshift Sv is recognised by a finite Büchi automaton, and thus, is

sofic;

(ii) the set Dv is recognised by a finite Büchi automaton;

(iii) the word v is eventually periodic.
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Proof [Sketch] Let Sv be the (infinite) automaton whose states are the v[n]

for all n in N, and whose transitions are v[n]
vn+1−−−−→ v[n+1] and v[n]

a−−→ v[0]
for every a < vn+1. All states are final and v[0] is initial. This automaton Sv

recognises Pref(Y ∗
v ), which is equal to F (Y ∗

v ). As a Büchi automaton, Sv

recognises Sv.

Let Dv be the automaton obtained from Sv by taking v[0] as unique final

state. As a Büchi automaton, Dv recognises Dv (cf. Figure 2.10).

Now, the automata Sv and Dv have both finite minimal quotients, S ′v and

D′
v respectively, if, and only if, v is eventually periodic. These automata S ′

v

and D′
v recognise the same sets of finite words and the same sets of infinite

words as Sv and Dv respectively.

ε 3 32 321 w[4] w[5] w[6] w[7]

0, 1, 2

3 2

0, 1

1

0

3

0, 1, 2

2

0, 1

1

0

3

0, 1, 2 0, 1

Fig. 2.10. The infinite automaton Dw, for w = (321)ω .

Remark 2.3.5 In the case where v is eventually periodic but not purely

periodic, the minimal quotients S ′v and D′
v have the same underlying graph,

and D′
v can also be obtained from S ′v by taking the image of v[0] as unique

final state, see Figure 2.11.

In the case where v is purely periodic, of the form (v1v2 · · · vp)
ω, the

situation is slightly different and S ′v and D′
v have not the same underlying

graph. However, D′
v can also be obtained from S ′v by performing an in-

splitting of the image of v[0] and by keeping as a unique final state the one

that does not belong to the loop labelled by v1 · · · vp, see Figure 2.12.

ε 3 32

0, 1, 2

3 2

0, 1 1

0

(a) S′
v

ε 3 32

0, 1, 2

3 2

0, 1 1

0

(b) D′
v

Fig. 2.11. Finite automata for Sv and Dv, v = 3(21)ω .
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ε 3 32

0, 1, 2

3 2

0, 1

0, 1

(a) S′
w

ε 3 32 321

0, 1, 2

3 2

0, 1

1

0
3

0, 1, 2

(b) The minimal (finite) quotient D′
w

Fig. 2.12. Finite automata for Sw and Dw , w = (321)ω .

Proposition 2.3.6 Let v be an lsm-word in AN. Then, the subshift Sv is

of finite type if, and only if, v is purely periodic.

Proof Suppose that v = (v1v2 · · · vp)
ω and consider the set

X ′
v = {v[n]b ∈ A∗ | 0 ≤ n ≤ p− 1, ∀b ∈ A, b > vn+1} .

It is easy to check that Sv = S(X ′
v) . The converse follows from the fact

that v is a lsm-word.

2.3.2 Real base

In this section we consider a base β which is a real number > 1. The

reader can consult (Lothaire 2002, Chapter 7) for the proof of some results

presented below, and other related results.

Any number x in the interval [0, 1) has a so-called greedy β-expansion

given by a greedy algorithm (Rényi 1957): let r0 = x, and, for j ≥ 1, let

xj = bβrj−1c and rj = {βrj−1}. Then x =
∑∞

j=1 xjβ
−j , where the xj ’s

are integer digits in the alphabet Aβ = {0, 1, . . . , dβe − 1}. The greedy β-

expansion of x is denoted by dβ(x). We also write x = .x1x2 · · · . The same

expansion can be obtained by the β-transformation on [0, 1): let τβ(x) =

{βx}. Then, for j ≥ 1, xj = bβτ j−1
β (x)c.

Note that, when β is an integer, we recover the classical expansion of any

x in [0, 1) defined in Section 2.2.

The same algorithm can be applied to x = 1, and we obtain the so-called

β-expansion of 1, dβ(1). Note that, if β is not an integer, then dβ(1) is an

infinite word on Aβ , but if β is an integer then dβ(1) = β0ω.

If x > 1, there exists k ≥ 0 such that x/βk belongs to the interval [0, 1).

If dβ(x/βk) = .x1x2 · · · , then x = x1 · · ·xk.xk+1xk+2 · · · . The greedy β-

expansion of x is also denoted 〈x〉β . The following lemma is an immediate

consequence of the greedy algorithm.

Lemma 2.3.7 An infinite sequence of non-negative integers (xi)i≥1 is the
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greedy β-expansion of a real number x of [0, 1) (resp. of 1) if, and only if,

for every i ≥ 1 (resp. i ≥ 2), xiβ
−i + xi+1β

−i−1 + · · · < β−i+1.

As in the usual numeration systems, the order between real numbers is

given by the lexicographic order on greedy β-expansions.

Proposition 2.3.8 Let x and y be two real numbers from [0, 1). Then

x < y if, and only if, dβ(x) < dβ(y).

Proof Let dβ(x) = (xi)i≥1 and let dβ(y) = (yi)i≥1, and suppose that

dβ(x) < dβ(y). There exists k ≥ 1 such that xk < yk and x1 · · ·xk−1 =

y1 · · · yk−1. Hence x ≤ y1β−1+· · ·+yk−1β
−k+1+(yk−1)β−k+xk+1β

−k−1+

xk+2β
−k−2 + · · · < y since xk+1β

−k−1 + xk+2β
−k−2 + · · · < β−k by

Lemma 2.3.7. The converse is immediate.

A number may have several different writings in base β, which we call

β-representations. The greedy β-expansion is characterised by the following

property.

Proposition 2.3.9 The greedy β-expansion of a real number x of [0, 1) is

the greatest of all the β-representations of x with respect to the lexicographic

order.

Example 2.3.10 Let ϕ be the Golden Ratio 1+
√

5
2 . The greedy ϕ-

expansion of x = 3−
√

5 is equal to 10010ω. Different ϕ-representations of

x are 01110ω, or 100(01)ω for instance.

If a representation ends in infinitely many zeros, like u0ω, the trailing

zeros are omitted and the representation is said to be finite.

The greedy β-expansion of x ∈ [0, 1] is finite if, and only if, τ i
β(x) = 0 for

some i, and it is eventually periodic if, and only if, the set {τ i
β(x) | i ≥ 1}

is finite.

2.3.2.1 The β-shift

Denote by Dβ the set of greedy β-expansions of numbers of [0, 1). It is a

shift-invariant subset of Aβ
N. The β-shift Sβ is the closure of Dβ . Note that

Dβ and Sβ have the same set of finite factors. When β is an integer, Sβ is

the full β-shift Aβ
N.

A finite (resp. infinite) word is said to be β-admissible if it is a factor of

an element of Dβ (resp. an element of Dβ).

The greedy β-expansion of 1 plays a special role in this theory. Let
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dβ(1) = (tn)n≥1 be the greedy β-expansion of 1. We define also the quasi-

greedy expansion d∗
β
(1) of 1 by: if dβ(1) = t1 · · · tm is finite, then d∗

β
(1) =

(t1 · · · tm−1(tm − 1))ω , d∗
β
(1) = dβ(1) otherwise.

Theorem 2.3.11 (Parry 1960) Let β > 1 be a real number, and let s be

an infinite sequence of non-negative integers. The sequence s belongs to Dβ

if and only if for all k ≥ 0

σk(s) < d∗
β
(1)

and s belongs to Sβ if, and only if, for all k ≥ 0

σk(s) ≤ d∗
β
(1).

Definition 2.3.12 A number β such that dβ(1) is eventually periodic is

called a Parry number . If dβ(1) is finite then β is called a simple Parry

number.

Example 2.3.13 1. Let ϕ be the Golden Ratio 1+
√

5
2 . The expansion of 1

is finite, equal to 11.

2. Let θ = 3+
√

5
2 . The expansion of 1 is eventually periodic, equal to

dθ(1) = 21ω.

3. Let β = 3
2 . Then dβ(1) = 101000001 · · · is aperiodic.

Remark 2.3.14 Note that the greedy β-expansion of 1 is never purely

periodic.

As a corollary of Theorem 2.3.11 follows that d∗
β
(1) is an lsm-word

and Sβ = Sd∗

β
(1) with the notation of Definition 2.3.2. By Proposi-

tions 2.3.3, 2.3.4 and 2.3.6 follow then the well-known properties of the

β-shift (established in (Ito and Takahashi 1974), (Bertrand-Mathis 1986),

(Blanchard 1989)).

Theorem 2.3.15 The β-shift Sβ is a coded symbolic dynamical system

which is

(i) sofic if, and only if, dβ(1) is eventually periodic, i.e., β is a Parry

number

(ii) of finite type if, and only if, dβ(1) is finite, i.e., β is a simple Parry

number.

Remark 2.3.16 Since a sofic symbolic dynamical system is of finite type

if, and only if, it can be recognised by a local automaton, see (Béal 1993),

it follows that, when β is a simple Parry number the automaton recognising

the β-shift can be chosen to be local.
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Example 2.3.17 1. Let ϕ be the Golden Ratio 1+
√

5
2 . The automaton of

Figure 2.14 (a) below recognising Sϕ is local, because every admissible word

with last letter 0 (resp. 1) arrives in state 0 (resp. 1).

2. Let θ = 3+
√

5
2 . Then dθ(1) = 21ω. The automaton of Figure 2.13

recognising Sθ is not local, since there are two different loops labelled by 1.

2

0

0, 1 1

Fig. 2.13. Finite automaton for the θ-shift, θ = 3+
√

5
2

.

The following result is a reformulation of Proposition 2.3.4.

Proposition 2.3.18 The set Dβ is recognisable by a finite Büchi automa-

ton if, and only if, dβ(1) is eventually periodic.

Example 2.3.19 Since dϕ(1) = 11, the ϕ-shift is a system of finite type,

recognised by the finite automaton of Figure 2.14 (a). The set Dϕ is recog-

nised by the finite Büchi automaton of Figure 2.14 (b).

0 1

1

0

0

(a) Sϕ for Sϕ.

0 1 2

1

1

0

0

0

(b) Dϕ for Dϕ.

Fig. 2.14. Finite automata for Sϕ and Dϕ, ϕ = 1+
√

5
2

.

There is an important case where the β-expansion of 1 is eventually pe-

riodic. A Pisot number is an algebraic integer greater than 1 such that all

its Galois conjugates have modulus less than one. The natural integers and

the Golden Ratio are Pisot numbers.

Theorem 2.3.20 (Schmidt 1980a) If β is a Pisot number, then every

number of Q(β) ∩ [0, 1] has an eventually periodic β-expansion.

As a consequence we obtain the important result, see also

(Bertrand 1977).

Theorem 2.3.21 If β is a Pisot number, then the β-shift is a sofic system.
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The topological entropy of a subshift S ⊆ AN is defined as

h(S) = lim
n→∞

1

n
log(Ln(S))

where Ln(S) denotes the number of factors of length n in S. One proof of

the following well-known result using the fact that the β-shift is a coded

system can be found in (Lothaire 2002, Chapter 1).

Proposition 2.3.22 The topological entropy of the β-shift is equal to logβ.

2.3.2.2 The (F) Property

If β is an integer, then every positive integer has a finite β-expansion, but

this is not true in general when β is not an integer. However, it is easy to see

that for the Golden Ratio ϕ, every positive integer has a finite expansion,

for instance, 〈2〉ϕ = 10.01.

More generally, it is interesting to find numbers having this property. We

recall some definitions and results from (Frougny and Solomyak 1992).

Definition 2.3.23 A number β is said to satisfy the (F) Property if every

element of Z[β−1] ∩ [0, 1) has a finite greedy β-expansion.

A number β is said to satisfy the (PF) Property if every element of N[β−1]∩
[0, 1) has a finite greedy β-expansion.

Proposition 2.3.24 If β satisfies the (F) Property then β is a Pisot num-

ber. Moreover, the following are equivalent:

• β satisfies the (F) Property

• β satisfies the (PF) Property and dβ(1) is finite.

There are Pisot numbers β with dβ(1) finite that do not satisfy the (F)

Property, for instance the Pisot number with minimal polynomial X4 −
2X3 −X − 1. Here dβ(1) = 2011 and 〈3〉β = 10.111(00012)ω.

The problem of characterising Pisot numbers satisfying the (F) Property

is still open. Up to now, the only families satisfying this property are the

following ones.

Theorem 2.3.25 Let β > 1 be a root of a polynomial in Z[X ] of the form

M(X) = Xg−b1Xg−1−b2Xg−2−· · ·−bg. If one of the following properties

holds, then β satisfies the (F) Property:

(i) b1 ≥ b2 ≥ · · · ≥ bg > 0,

(ii) bi ≥ 0 for 1 ≤ i ≤ g and b1 >
∑g

i=2 bi.
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Part (i) is from (Frougny and Solomyak 1992) and Part (ii) from

(Hollander 1996).

Cubic Pisot units satisfying (F) are characterised by the following.

Theorem 2.3.26 (Akiyama 2000) A cubic Pisot unit β satisfies the

(F) Property if, and only if, it is a root of the polynomial M(X) =

X3 − aX2 − bX − 1 of Z[X ] with a ≥ 0 and −1 ≤ b ≤ a+ 1.

A family of Pisot numbers satisfying (PF) is the following one.

Theorem 2.3.27 Let β be such that dβ(1) = t1t2 · · · tm(tm+1)
ω with t1 ≥

t2 ≥ · · · ≥ tm > tm+1 > 0. Then β is a Pisot number which satisfies the

(PF) Property.

Corollary 2.3.28 Every quadratic Pisot number satisfies the (PF) Prop-

erty.

Example 2.3.29 The number θ = 3+
√

5
2 , with dθ = 21ω satisfies the

(PF) Property, but not the (F) Property, since 〈θ − 1〉θ = 1.1ω.

2.3.2.3 Digit-set conversion and normalisation

Let C be an arbitrary alphabet of digits. The normalisation νβ,C in base

β on C is the partial function which maps any β-representation on C of a

given number of [0, 1) onto the greedy β-expansion of that number:

νβ,C : CN → Aβ
N (ci)i≥1 7→ dβ(

∑

i≥1

ciβ
−i) .

The function νβ,C is partial since as C may contain negative digits, a word

of C∗ may represent a negative number, which has no β-expansion. Note

that, as for the integer bases, addition and multiplication by a positive inte-

ger constant K are particular instances of normalisation. Addition consists

in normalising on the alphabet {0, . . . , 2(dβe − 1)}, and multiplication by

K on the alphabet {0, . . . ,K(dβe − 1)}.
We first adapt the notions of zero automaton and digit-conversion trans-

ducers given in Section 2.2.3 for integer base to the non-integer base β.

Zero automaton The evaluator Zβ in base β is defined as in integer

base but for the set of states which is Z[β]. The initial state is 0 and the

transitions are of the form:

∀s, t ∈ Z[β] ∀a ∈ Z s
a−−→
Zβ

t if, and only if, t = β s+ a . (2.11)

Let Bd = {−d, . . . , d} where d is a positive integer, d ≥ bβc .
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Proposition 2.3.30 An infinite word z in Bd
N has value 0 in base β if, and

only if, it is accepted by the Büchi automaton Zβ,d = (Qd, Bd, E, {0}, Qd )

where the transitions in E are those defined by (2.11) and Qd = Z[β] ∩
[− d

β−1 ,
d

β−1 ].

Proof By the definition of Zβ,d, every infinite word z that labels an infinite

computation in Zβ,d is accepted by Zβ,d. For every n ≥ 1, |πp (z1 · · · zn)| ≤
d

β−1 and then πβ (.z) = limn→+∞ 1
βn πp (z1 z2 · · · zn) = 0 .

Conversely, let z in Bd
N which does not label a computation in Zβ,d, that

is, there exists a prefix w of z such that

0
w−−→

Zβ,d

t with t > d/(β − 1) .

We have

πp (.z) ≥ πp

(
.wd

ω)
=

1

β|w|

(
t− d

β − 1

)
> 0 .

(The case t < −d/(β − 1) is identical.)

This automaton is called the zero automaton in base β over the alphabet Bd.

It is not finite in general. Our aim is now to prove the following result.

Theorem 2.3.31 The following conditions are equivalent:

(i) the zero automaton Zβ,d is finite for every d ≥ bβc
(ii) the zero automaton Zβ,d is finite for one d ≥ bβc+ 1

(iii) β is a Pisot number.

The proof relies on the following statements.

Lemma 2.3.32 If Zβ,d is finite, then β is an algebraic integer.

Proof Let dβ(1) = (ti)i≥1. Then (−1)t1t2 · · · is the label of a path in

Zβ,d, and there exist n and p such that the states πβ((−1)t1t2 · · · tn) and

πβ((−1)t1t2 · · · tn · · · tn+p) are the same.

We now suppose that β is an algebraic integer with minimal polynomial

Mβ of degree g. Denote β1 = β, β2, . . . , βg the roots of Mβ. On the discrete

lattice of rank g, Z[X ]/(Mβ) ' Z[β], a norm is defined as

||P (X)|| = max
1≤i≤g

|P (βi)|. (2.12)

Proposition 2.3.33 If β is a Pisot number, then Zβ,d is finite for every

d ≥ bβc.
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Proof Every state s in Qd is associated with the label of the shortest path

z1z2 · · · zn from 0 to s in the automaton. Thus s = s(β) = z1β
n−1+ · · ·+zn,

with s(X) in Z[X ]/(Mβ) and |s| = |s(β)| ≤ d
β−1 . For every conjugate βi

with |βi| < 1, we have |s(βi)| ≤ d
1−|βi| . Since β is Pisot, this is true for

2 ≤ i ≤ g. Thus every state of Qd is bounded in norm, and so there is only

a finite number of them.

Example 2.3.34 The zero automaton on {−1, 0, 1} for ϕ = 1+
√

5
2 is drawn

in Figure 2.15.

0 1

ϕ−ϕ

ϕ− 1−1−ϕ+ 1
1

00

1̄1̄1

0

1 1̄

00

1̄1

Fig. 2.15. Finite zero automaton Zϕ,1, ϕ = 1+
√

5
2

.

Part (i) implies (iii) of Theorem 2.3.31 is proved in

(Berend and Frougny 1994).

Proposition 2.3.35 If the zero automaton Zβ,d is finite for every d ≥ bβc,
then β is a Pisot number.

The core of Proposition 2.3.35 consists in using, with techniques of com-

plex analysis, the following lemma for every integer d.

Lemma 2.3.36 If the automaton Zβ,d is finite, then for every conjugate

βi with |βi| > 1, if s = s(β) belongs to Qd then |s(βi)| ≤ d
|βi|−1 .

Proof Let z1z2 · · · be the label of a path recognised by Zβ,d with origin 0.

Since Qd is finite there exist n and p such that s = s(β) = z1β
n−1 + · · ·+

zn = z1β
n+p−1 + · · · + zn+p. Thus for every conjugate βi with |βi| > 1,

z1β
n−1
i + · · · + zn = z1β

n+p−1
i + · · · + zn+p = βp

i (z1β
n−1
i + · · · + zn) +

zn+1β
p−1
i + · · ·+ zn+p, thus

|z1βn−1
i + · · ·+ zn| ≤

d

|βi|p − 1

|βi|p − 1

|βi| − 1
=

d

|βi| − 1
.
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Example 2.3.37 Take β the root > 1 of the polynomial X4 − 2X3 −
2X2 − 2. Then dβ(1) = 2202 and β is a simple Parry number, but it is not

a Pisot number, since there is another root α ≈ −1.134186. By a direct

computation it can be shown that the path of label 1̄2211̄12̄201 in Zβ,2 with

origin 0 leads to a state s = s(β) such that s(α) > 2/(|α|−1). Lemma 2.3.36

implies that, for every d ≥ 2, the set of words of Bd
N having value 0 is not

recognisable by a finite automaton.

Normalisation Take two alphabets of integers C and A. Let d =

max(|c − a|) for c in C and a in A, and let Bd = {−d, . . . , d} as above.

As in Section 2.2.2.1, one constructs from the zero automaton Zβ,d a digit-

conversion transducer or converter Cβ(C×A). The transitions are defined

by

s
c|a−−−→

Cβ(C×A)
t if, and only if, s

c−a−−−−→
Zβ,d

t .

Thus one obtains the following proposition.

Proposition 2.3.38 The converter Cβ(C×A) recognises the set
{
(x, y) ∈ CN ×AN

∣∣ πβ (x) = πβ (y)
}
.

If β is a Pisot number, then Cβ(C×A) is finite.

Theorem 2.3.39 (Frougny 1992) If β is a Pisot number, then normal-

isation in base β on any alphabet C is realisable by a finite letter-to-letter

transducer.

Proof Since β is a Pisot number the automaton Dβ recognising Dβ is finite

by Proposition 2.3.18. The normaliserNβ(C) is obtained as the composition

of Cβ(C×Aβ) with the transducer which realises the intersection with Dβ .

It is easy to check that for any fixed digit alphabet C, normalisation in

base β on C is a bounded-length discrepancy function (see Section 2.6.3). It

follows then, that if normalisation in base β on an alphabet C is realisable

by a finite transducer, it is realisable by a finite letter-to-letter transducer,

and then that the zero automaton Zβ,d is finite for d = max(|c − a|), for c

in C and a in Aβ .

The following result allows to prove that (ii) implies (i) in Theorem 2.3.31.

Proposition 2.3.40 (Frougny and Sakarovitch 1999) If normalisa-

tion in base β on the alphabet A′
β

= {0, . . . , bβc, bβc + 1} is realisable by
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a finite transducer, then normalisation in base β is realisable by a finite

transducer on any alphabet.

In view of Example 2.3.37, we set the following conjecture.

Conjecture 2.3.41 If the zero automaton Zβ,d is finite for d = bβc then

β is a Pisot number.

2.3.3 U-systems

We now consider another generalisation of the integer base numeration sys-

tems which only allows to represent natural integers. The base is replaced

by a basis which is an infinite sequence of positive integers (also called scale)

and which plays the role of the sequence of the powers of the integer base.

The classical example is the Fibonacci numeration system. These systems

have been first defined and studied in full generality in (Fraenkel 1985).

We shall see that, under mild and natural hypotheses, the basis is associ-

ated with a real number β, as the Fibonacci numeration system is associated

with the Golden Ratio. Then, many of the properties established for nu-

meration in base β transfer to the U -system, but the situation is far more

intricate. In fact, even in the simple case where the β is an integer, the

language of the numeration system may or may not be a rational language

according to the initial conditions (see Example 2.3.58).

2.3.3.1 Rationality of U -expansions

A basis is a strictly increasing sequence of integers U = (un)n≥0 with u0 = 1.

A representation in the system U — or a U -representation — of a non-

negative integer N is a finite sequence of integers (di)k≥i≥0 such that

N =

k∑

i=0

diui.

Such a representation will be written dk · · · d0, most significant digit first.

Among all possible U -representations of a given non-negative integer N ,

one is distinguished and called the U -expansion of N . It is also called the

greedy U -representation, since it can be obtained by the following greedy

algorithm: given integers m and p let us denote by q(m, p) and r(m, p)

the quotient and the remainder of the Euclidean division of m by p. Let

k ≥ 0 such that uk ≤ N < uk+1 and let dk = q(N, uk) and rk = r(N, uk),

and, for i = k − 1, . . . , 0, di = q(ri+1, ui) and ri = r(ri+1 , ui). Then

N = dkuk + · · ·+ d0u0. The U -expansion of N is denoted by 〈N〉U .

By convention the U -expansion of 0 is the empty word ε. Under the
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hypothesis that the ratio un+1/un is bounded by a constant as n tends to

infinity, the digits of the U -expansion of any positive integer N are bounded

and contained in a canonical finite alphabet AU associated with U .

Example 2.3.42 Let F = (Fn)n≥0 be the sequence of Fibonacci numbers,

F = {1, 2, 3, 5, . . .}. The canonical alphabet is equal to {0, 1}. The F -

expansion of the number 11 is 10100, another F -representation is 10011.

The U -expansions are characterised by the following.

Lemma 2.3.43 The word dk · · · d0, where each di, for k ≥ i ≥ 0, is a non-

negative integer and dk 6= 0, is the U -expansion of some positive integer if,

and only if, for each i, diui + · · ·+ d0u0 < ui+1.

Proposition 2.3.44 The U -expansion of an integer is the greatest in the

radix order of all the U -representations of that integer.

Proof Let v = dk · · · d0 be the greedy U -representation of N , and let w =

wj · · ·w0 be another representation. Since uk ≤ N < uk+1, then k ≥ j. If

k > j, then v � w. If k = j, suppose v ≺ w. Thus there exist i, k ≥ i ≥ 0,

such that di < wi and dk · · · di+1 = wk · · ·wi+1. Hence diui + · · ·+ d0u0 =

wiui + · · ·+w0u0, but diui + · · ·+d0u0 ≤ (wi−1)ui +di−1ui−1 + · · ·+d0u0,

so ui +wi−1ui−1 + · · ·+w0u0 ≤ di−1ui−1 + · · ·+d0u0 < ui since v is greedy,

a contradiction.

As for the beta-expansions, the order between integers is given by the

radix order on their U -expansions.

Proposition 2.3.45 Let M and N be two positive integers. Then M < N

if, and only if, 〈M〉U ≺ 〈N〉U .

The set of U -expansions of all the non-negative integers is denoted

by L(U).

Example 2.3.46 Let F be the sequence of Fibonacci numbers. Then L(F )

is the set of words without the factor 11, and not beginning with a 0:

L(F ) = 1{0, 1}∗ \ {0, 1}∗11{0, 1}∗ ∪ {ε}.

When the sequence U satisfies a linear recurrence with integral coeffi-

cients, that is, when U is a linear recurrent sequence, we say that U defines

a linear numeration system or that U is a linear recurrent basis.
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Proposition 2.3.47 (Shallit 1994) Let U be a basis. If L(U) is a ratio-

nal language, then U is a linear recurrent sequence.

Proof (Loraud 1995) Let `n (resp. kn) be the number of words of length n

in L(U) (resp. in 0∗L(U)). Since a word in L(U) does not begin with

a 0, we have kn = `0 + `1 + · · · + `n for every n and then kn = un by

Lemma 2.3.43. If L(U) is a rational language, so is 0∗L(U) and U = (un)n≥0

is a linear recurrent sequence, a classical result in automata theory (see

Theorem 2.6.2).

The results on β-expansions transfer to the U -expansions when U satisfies

some conditions. The results below were established in (Hollander 1998).

A linear recurrent basis U = (un)n≥0 is said to satisfy the dominant root

condition if limn→∞ un+1/un = β for some β > 1.

Lemma 2.3.48 Let U be a linear recurrent basis, with characteristic poly-

nomial CU (X). Assume that CU (X) has a unique root β, possibly with

multiplicity, of maximum modulus, and assume that β is real. Then U

satisfies the dominant root condition for β.

For a language L, we denote by Maxlg (L) the set of words of L which

have no greater word of the same length in L in the radix order. It is known

that if L is rational, so is Maxlg (L) (Proposition 2.6.4). The following is

also a classical result of automata theory (see Proposition 2.6.3).

Lemma 2.3.49 Let M be a language which contains exactly one word of

every length. If M is rational, then there exist an integer p, a finite family

of words xi, yi, and zi, with |yi| = p, and a finite set of words M0 such that

M =

i=p⋃

i=1

xiy
∗
i zi ∪M0 (2.13)

where the union is disjoint.

For every n in N, let mn be the word of length n of L(U) which is max-

imum in the radix order : mn = 〈un − 1〉U , and Maxlg (L(U)) = ∪n≥0mn.

Note that the empty word ε = m0 belongs to M . The following result is

similar to the lexicographical characterisation of the β-shift given by Parry,

see Theorem 2.3.11.

Proposition 2.3.50 The following holds:

L(U) = ∪n≥0{v ∈ An
U | every suffix of length i ≤ n of v is � mi} .
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Using the previous result, one can construct a finite automaton similar

to the one defined for the β-shift.

Proposition 2.3.51 If Maxlg (L(U)) is rational, so is L(U).

The following lemma shows that the β-expansion of 1 governs the U -

expansions when β is the dominant root of U .

Lemma 2.3.52 Suppose that U has a dominant root β, and let dβ(1) =

(tn)n≥1. Then for each j there exist n and a word wj of length n− j such

that mn = 〈un − 1〉U = t1 · · · tjwj .

Proposition 2.3.53 (Hollander 1998) Let U be a linear recurrent basis

with dominant root β. If L(U) is rational then β is a Parry number.

Proof [Sketch] If L(U) is rational, then Maxlg (L(U)) is of the form (2.13).

By Lemma 2.3.52, for each j, there exist an n and a word wj of length n−j
such that mn = t1 · · · tjwj . Combining the two properties, it follows that

dβ(1) must be finite or eventually periodic.

From now on β is a Parry number. In this case, there is a polynomial

satisfied by β which arises from the greedy expansion of 1. If dβ(1) is finite,

dβ(1) = t1 · · · tm, then set

Gβ(X) = Xm −
m∑

i=1

tiX
m−i.

If dβ(1) is infinite eventually periodic, dβ(1) = t1 · · · tm(tm+1 · · · tm+p)
ω ,

with m and p minimal, then set

Gβ(X) = Xm+p −
m+p∑

i=1

tiX
m+p−i −Xm +

m∑

i=1

tiX
m−i.

Such a polynomial is called the canonical beta-polynomial for β. Note that

in general Gβ is not equal to the minimal polynomial of β but is a multiple

of it.

Example 2.3.54 Let η be the root > 1 of the polynomial Mη = X3−X−
1. This number is the smallest Pisot number. Since dη(1) = 10001, the

canonical beta-polynomial is Gη = X5 −X4 − 1.

We will need a slightly more general definition. If dβ(1) is infinite even-

tually periodic, dβ(1) = t1 · · · tm(tm+1 · · · tm+p)
ω, with m and p minimal,
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set r = p. If dβ(1) is finite, dβ(1) = t1 · · · tm, then set r = m. An extended

beta-polynomial is a polynomial of the form

Hβ(X) = Gβ(X)(1 +Xr + · · ·+Xrk)Xn

for k in N and n in N.

When dβ(1) is infinite an extended beta-polynomial corresponds to taking

m and p not minimal. When dβ(1) is finite an extended beta-polynomial

corresponds to taking improper expansions of 1 of the form (t1 · · · tm−1(tm−
1))kt1 · · · tm, and to any writing of d∗

β
(1) as uvω.

Example 2.3.55 The canonical beta-polynomial for the Golden Ratio is

Gϕ = X2 −X − 1. The polynomial X4 −X3 −X − 1 = Gϕ(1 +X2) is an

extended beta-polynomial corresponding to the improper expansion 1011

of 1.

Lemma 2.3.56 Let Hβ(X) be an extended polynomial for β > 1, and as-

sume that Hβ(X) = CU (X). Then U satisfies the dominant root condition

for β, and β is a simple root of Hβ(X).

The following theorem shows that the situation for linear numeration

systems is much more complicated than for the β-shift.

Theorem 2.3.57 (Hollander 1998) Let U be a linear recurrent basis

whose dominant root β is a Parry number.

• If dβ(1) is infinite eventually periodic, then L(U) is rational if, and only

if, U satisfies an extended beta-polynomial for β.

• If dβ(1) is finite, of length m, then: if U satisfies an extended beta-

polynomial for β then L(U) is rational; and conversely if L(U) is rational,

then U satisfies either an extended beta-polynomial for β, Hβ(X), or a

polynomial of the form (Xm − 1)Hβ(X).

In the finite case, rationality indeed depends on initial conditions.

Example 2.3.58 (Hollander 1998) Take un = 4un−1 − 3un−2 with

CU (X) = (X − 1)(X − 3). The dominant root is β = 3.

Take u0 = 1 and u1 = 4. Then un = 3un−1 + 1, and so the language of

maximal words is M = 30∗, and L(U) is rational.

Take u0 = 1 and u1 = 2. Then un = 3un−1 − 1 = (3n + 1)/2, and

AU = {0, 1, 2}. Let k be the largest integer such that mn begins with k

digits 2. Thus k is the largest integer such that

3n + 1

2
> 2(

3n−1 + 1

2
+ · · ·+ 3n−k + 1

2
)
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that is, 3n−k + 1 > 2n, and 3n−k + 1 + 2(n − k) > 2n. As n → ∞, both

k →∞ and n− k →∞, and L(U) is not rational.

We now define a numeration system canonically associated with a real

number β in a way that gives the numeration system the same dynamical

properties as the β-shift.

Definition 2.3.59 The numeration system associated with β is defined by

the basis Uβ = (un)n≥0 as follows:

If dβ(1) is finite, dβ(1) = t1 · · · tm, set

un = t1un−1 + · · ·+ tmun−m for n ≥ m,

u0 = 1, and for 1 ≤ i ≤ m− 1, ui = t1ui−1 + · · ·+ tiu0 + 1.

If dβ(1) = (ti)i≥1 is infinite, set

un = t1un−1 + t2un−2 + · · ·+ tnu0 + 1, for n ≥ 1, u0 = 1.

If dβ(1) is finite or eventually periodic, the sequence Uβ is linearly recur-

rent, and its characteristic polynomial is thus the canonical beta-polynomial

of β.

Example 2.3.60 The linear numeration system associated with the

Golden Ratio is the Fibonacci numeration system.

Proposition 2.3.61 (Bertrand-Mathis 1989) Let β > 1 be a real

number. Then L(Uβ) = L(Sβ) .

Example 2.3.62 Take the Pisot number θ = 3+
√

5
2 , then dθ(1) = 21ω,

and Uθ = {1, 3, 8, 21, 55, 144, 377, . . .} is the sequence of Fibonacci numbers

of even index. The beta-polynomial Gθ(X) = X2 − 3X + 1 is equal to

the minimal polynomial of θ. The set L(Uθ) is recognisable by the finite

automaton of Figure 2.13 above, which recognises the θ-shift.

On the other hand, consider the linear recurrent basis Rθ =

{1, 2, 6, 17, 46, 122, 321, . . .} defined by rn = 4rn−1−4rn−2 +rn−3 for n ≥ 3,

r0 = 1, r1 = 2, r2 = 6. Then θ is the dominant root of Rθ; the characteristic

polynomial of Rθ is equal to (X−1)(X2−3X+1). By showing that Rθ does

not satisfy an extended beta-polynomial, Theorem 2.3.57 implies that the

set L(Rθ) is not recognisable by a finite automaton. A direct combinatorial

proof can be found in (Frougny 2002).
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2.3.3.2 Normalisation

Let C be an arbitrary alphabet of digits. The normalisation νU,C in basis

U on C is the partial function which maps any U -representation on C of

any positive integer n onto the U -expansion of n:

νU,C : C∗ → AU
∗ ck · · · c0 7→ 〈

k∑

i=0

ciui〉U .

As for beta-expansions, one can define the zero automaton and the con-

verter for a U -system. Let us say that U is a Pisot basis if U is a linear

recurrent basis whose characteristic polynomial is the minimal polynomial

of a Pisot number. It follows from Theorem 2.3.57 that if U is a Pisot basis,

then L(U) is rational.

Proposition 2.3.63 Let U be a Pisot basis. Then, for any alphabet of

digits, the zero automaton and the converter in the system U are finite.

Example 2.3.64 The zero automaton in the Fibonacci numeration system

and for the alphabet {−1, 0, 1} is the automaton of Figure 2.15, without

the states labelled ϕ and −ϕ, and with 0 as unique final state.

By a similar construction to the one exposed in Section 2.3.2.3, we obtain

the following result.

Proposition 2.3.65 (Frougny and Solomyak 1996) Let U be a Pisot

basis. For any digit alphabet C, the normalisation νU,C is realisable by a

finite letter-to-letter transducer.

Example 2.3.66 Normalisation on {0, 1} in the Fibonacci numeration sys-

tem consists in replacing every factor 011 by 100. The finite transducer

realising normalisation is shown in Figure 2.16. For sake of simplicity, this

normaliser does not accept words which begin with 11.

1|1

0|0

0|11|0

0|0

0|0, 1|1

1|0

Fig. 2.16. Finite normaliser on {0, 1} for the Fibonacci numeration system.
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2.3.3.3 Successor function

The successor function is usually and canonically defined on N: n 7→ n+1 .

What we call ‘successor function’ here is of course the same function, but

lifted at the level of expansions in the system we consider. Successor func-

tion is a special case of addition and thus of normalisation. When the latter

is a rational function, or even realised by a letter-to-letter (right sequential)

transducer, so is the successor function, without any ado. But this succes-

sor function is such a special case that we can give statements under weaker

hypotheses than the ones that assure the rationality of normalisation.

Let U be a basis and, as above, L = L(U) the set of U -expansions. The

successor function in the basis U is thus the function SuccL which maps

every word of L onto its successor in L in the radix order. If L is a rational

language, it is thus known that SuccL is a synchronous relation, even a (left

and right) letter-to-letter rational relation, even a piecewise right sequen-

tial function (see Proposition 2.6.7, Corollary 2.6.11, Proposition 2.6.14 in

Section 2.6). From Proposition 2.3.61 above, we then have the following

consequence of these results.

Proposition 2.3.67 Let β be a Parry number and Uβ the linear numer-

ation system associated with β. The successor function in the numeration

system Uβ is realisable by a letter-to-letter transducer.

In general, the successor function in a linear numeration system is not

co-sequential, as shown by the next example.

Example 2.3.68 Take the Pisot number θ = 3+
√

5
2 , see Example 2.3.62.

By the foregoing, L(Uθ) is rational, and SuccL(Uθ) is realisable by a finite

transducer. For every n, the words vn = 021n and wn = 01n+1 are in L(Uθ).

We have SuccL(Uθ)(vn) = 10n+1 and SuccL(Uθ)(wn) = 01n2.

The suffix distance ds (x, y) of two words x and y is

ds (x, y) = |x|+ |y| − 2 |x ∧s y|

where x∧sy is the longest common suffix of x and y. It comes ds (vn, wn) =

4 and ds

(
SuccL(Uθ)(vn), SuccL(Uθ)(wn)

)
= 2(n + 2) . By the character-

isation of co-sequential functions due to Choffrut (see Theorem 2.6.13),

SuccL(Uθ)is not co-sequential.

The conditions under which the successor function in a linear numeration

system is co-sequential are indeed completely determined.

Theorem 2.3.69 (Frougny 1997) Let U be a numeration system such
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that L(U) is rational. The successor function in the system U is co-

sequential if, and only if, the set Maxlg (L(U)) is of the form

Maxlg (L(U)) =

i=p⋃

i=1

y∗i zi ∪M0 (2.14)

where M0 is finite, |yi| = p and the union is disjoint.

In the case of linear numeration system with dominant root, the previous

result can be refined.

Theorem 2.3.70 Let U be a linear recurrent basis whose dominant root

β is a Parry number. Then the successor function in the system U is co-

sequential if, and only if, the following conditions hold:

(i) β is a simple Parry number;

(ii) U satisfies the canonical beta-polynomial for β.

Example 2.3.71 The successor function in the Fibonacci numeration sys-

tem is realised by a finite right sequential transducer, see Figure 2.17.

0′ 0 1 ε1′

ε |1ε |1

1 |0

0 |ε

0 |ε

1 |00

0 |01

0 |0
1 |1

0 |0

Fig. 2.17. Finite right sequential transducer for the successor function in the
Fibonacci numeration system.

2.3.4 Base changing

As far as comparison, or conversion, of the expansions of numbers in dif-

ferent real bases is concerned, the situation is very similar to the one with

integer bases. In the background, and for the negative part, stand the gen-

eralisations of Cobham’s Theorem — we choose the one due to Bès. If U

is a basis, a set of natural integers is said to be U -recognisable if the set of

the U -expansions of its elements is a rational set.

Theorem 2.3.72 (Bès 2000) Let U and V be two Pisot basis, associated

with two multiplicatively independent Pisot numbers. A set X of positive

integers is both U - and V -recognisable if, and only if, it is recognisable.
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From this result follows that the conversion between the expansions in

two such linear numeration systems U and V cannot be realised by a finite

transducer.

2.3.4.1 Multiplicatively dependent bases

We now consider the case where the bases β and γ are multiplicatively de-

pendent. When β and γ are integers, then the conversion from base β

to base γ is realisable by a finite right sequential transducer (Proposi-

tion 2.2.17).

Proposition 2.3.73 Let β and γ be two multiplicatively dependent Pisot

numbers. The conversion from base γ to base β is realisable by a finite

transducer.

Proof Set δ = βk = γ` and let (xi)i≥1 = dδ(x) where x is in [0, 1). Then

0k−1x10
k−1x20

k−1 · · · is a β-representation of x on the alphabet Aδ . Since

β is Pisot, normalisation in base β on the alphabet Aδ is realisable by a

finite transducer. Similarly the conversion from base δ to base γ is realisable

by a finite transducer. By composition and inversion of relations realised

by finite transducers, the result follows (see Section 2.6).

Now, as in Theorem 2.3.72, we consider linear numeration systems. We

first suppose that the two systems have the same characteristic polynomial.

Proposition 2.3.74 Let U and V be two Pisot basis, associated with the

same Pisot number, but defined by different initial conditions. The con-

version from a V -representation of a positive integer to the U -expansion of

that integer is computable by a finite transducer.

Proof By Proposition 2.3.65 normalisation in the system U is computable

by a finite transducer on any alphabet. Suppose that Mβ, the minimal

polynomial of β, has degree g. The family {un, un+1, . . . , un+g−1 | n ≥ 0}
is free, because its annihilator polynomial is Mβ. Since U and V have the

same characteristic polynomial, it is known from standard results of linear

algebra that there exist rational constants λi such that, for each n ≥ 0,

vn = λ1un+g−1 + · · · + λgun. One can assume that the λi’s are all of the

form pi/q where the pi’s belong to Z and q belongs to N, q 6= 0. Let N be

a positive integer and consider a V -representation cj · · · c0 of N , where the

ci’s are in an alphabet of digits B ⊇ AV . Then qN = cjqvj + · · · + c0qv0.

Since for n ≥ 0, qvn = p1un+g−1 + · · ·+pgun, we get that qN is of the form

qN = dj+g−1uj+g−1 + · · ·+ d0u0. Since each digit di, for 0 ≤ i ≤ j + g− 1,

is a linear combination of q, p1, . . . , pg, and the ci’s, we get that di is an
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element of a finite alphabet of digits D ⊃ AU . By assumption, νU,D is

computable by a finite automaton. It remains to show that the function

which maps νU,D(dj+g−1 · · · d0) =< qN >U onto < N >U is computable by

a finite automaton, and this is due to the fact that it is the inverse of the

multiplication by the natural q, which is computable by a finite automaton

in the system U .

Definition 2.3.75 Let β be a Pisot number of degree g, and denote

β1 = β, . . . , βg the roots of the minimal polynomial Mβ. The Lucas-like

numeration system associated with β is the system defined by the basis

Vβ = (vn)n≥0 where

v0 = 1, and for n ≥ 1, vn = βn
1 + · · ·+ βn

g .

The characteristic polynomial of Vβ is equal to Mβ .

This terminology comes from the fact that for the Golden Ratio ϕ, Vϕ is

the sequence of Lucas numbers. On the other hand, the numeration system

Uβ associated with β in Definition 2.3.59 is a Fibonacci-like numeration

system, since, for the Golden Ratio ϕ, Uϕ is the sequence of Fibonacci

numbers.

Proposition 2.3.76 Let β be a Pisot number, and let δ = βk. The con-

version from the Lucas-like numeration system Vδ to the the Lucas-like nu-

meration system Vβ is realisable by a finite transducer.

Proof The conjugates of δ are of the form δi = βk
i , for 2 ≤ i ≤ g. Set

Vδ = (wn)n≥0 with wn = δn
1 + · · · + δn

m for n ≥ 1. For n ≥ 1, wn = vkn.

Thus any Vδ-representation of an integer N of the form dj · · · d0 gives a

Vβ-representation of N of the form dj0
k−1dj−10

k−1 · · · d10
k−1d0. Since the

normalisation in the system Vβ is computable by a finite transducer on any

alphabet by Proposition 2.3.65, the result follows.

Theorem 2.3.77 (Frougny 2002) Let U and V be two Pisot basis, as-

sociated with two multiplicatively dependent Pisot numbers. Then the con-

version from a V -representation of a positive integer to the U -expansion of

that integer is computable by a finite transducer.

Proof Set δ = βk = γ`. As in Proposition 2.3.76, the conversion from the

Lucas-like numeration system Vδ to the the Lucas-like numeration system

Vγ is realisable by a finite transducer. By Proposition 2.3.74, the conversion

from V to Vγ and the conversion from Vβ to U are realisable by a finite

transducer, and the result follows.
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Corollary 2.3.78 Let U and V be two Pisot basis, associated with two

multiplicatively dependent Pisot numbers. Then the U -recognisable sets and

V -recognisable sets of natural integers coincide.

2.3.4.2 Base β and Uβ numeration system

When β is an integer, β-expansions and Uβ-expansions of the positive in-

tegers are the same. There is a particular case of Pisot numbers for which

the conversion from base β to the Uβ numeration system is realisable by

means of a finite transducer.

Let us take the example of the Golden Ratio ϕ and the Fibonacci numera-

tion system. By Theorem 2.3.25, ϕ satisfies the (F) Property, so the greedy

ϕ-expansion of every positive integer is finite. In this section we want to

answer the following questions. Does there exist a characterisation of the

greedy ϕ-expansions of the positive integers? Is there any relation between

the greedy ϕ-expansion of a positive integer and its greedy representation

in the Fibonacci system? Table 2.1 below gives the ϕ-expansion of the first

10 integers together with their Fibonacci greedy representation.

N Fibonacci representations ϕ-expansions Folded ϕ-expansions

1 1 1. 1
0

2 10 10.01 1
1

0
0

3 100 100.01 1
0

0
1

0
0

4 101 101.01 1
0

0
1

1
0

5 1000 1000.1001 1
1

0
0

0
0

0
1

6 1001 1010.0001 1
1

0
0

1
0

0
0

7 1010 10000.0001 1
0

0
1

0
0

0
0

0
0

8 10000 10001.0001 1
0

0
1

0
0

0
0

1
0

9 10001 10010.0101 1
0

0
1

0
0

1
1

0
0

10 10010 10100.0101 1
0

0
1

1
0

0
1

0
0

Table 2.1. Fibonacci expansions, ϕ-expansions, and folded ϕ-expansions of

the 10 first integers.

In fact the results are not only valid for the Golden Ratio, but for the



92 Ch. Frougny, J. Sakarovitch

larger class of quadratic Pisot units. A quadratic Pisot unit is an algebraic

number whose minimal polynomial is of the form X2−rX−1 with r ≥ 1 or

X2−rX+1 with r ≥ 3. By Corollary 2.3.28, every quadratic Pisot number

satisfies the (PF) Property, and thus the expansion of every positive integer

is finite. If the β-expansion of a positive integer n is of the form u.v, by

padding the shortest word by 0’s one can suppose that they have the same

length. The folded β-expansion of n is the couple (u
ev ), where ṽ is the mirror

image of v.

Theorem 2.3.79 (Frougny and Sakarovitch 1999) Let β be a

quadratic Pisot unit. There exists a letter-to-letter finite transducer

that maps the Uβ-representation of any positive integer onto its folded

β-expansion.

Since the image of a function computable by a finite letter-to-letter

transducer is a rational language, it then follows immediately from The-

orem 2.3.79 that we have:

Corollary 2.3.80 Let β be a quadratic Pisot unit. The set of folded β-

expansions of all the non-negative integers is a rational language.

By a result of (Rosenberg 1967) follows thus that the set of β-expansions

of all the non-negative integers is a linear context-free language. The fol-

lowing result shows that only quadratic Pisot units enjoy this property.

Theorem 2.3.81 (Frougny and Solomyak 1999) Let β > 1 be a non-

integral real number such that the β-expansion of every non-negative integer

is finite. Let Rβ ⊂ A∗
β.A

∗
β be the set of β-expansions of all the non-negative

integers. If Rβ is a context-free language, then β must be a quadratic Pisot

unit.

2.4 Canonical numeration systems

In this section we present another generalisation of the integer base num-

ber system, in which the expansion of a number is given by a right-to-

left algorithm. The canonical numeration systems have been extensively

studied, and we refer the reader to (Scheicher and Thuswaldner 2004),

(Akiyama and Rao 2005), (Brunotte, Huszti, and Pethő 2006) for some re-

cent contributions, and (Barat, Berthé, Liardet, et al. 2006) for a survey.

We also present briefly a new concept, the shift radix systems, which is a

generalisation of both the Pisot base and the canonical numeration systems.
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2.4.1 Canonical numeration systems in algebraic number fields

The elements of this section are taken in particular from (Gilbert 1981,

Gilbert 1991, Kátai and Kovács 1981)).

Let β be an algebraic integer of modulus > 1, and let A be a finite set of

elements of Z[β] containing zero.

Definition 2.4.1 The pair (β,A) is a canonical numeration system (CNS

for short) if every element z of Z[β] has a unique integer representation

dk · · · d0 with dj in A, dk 6= 0, that we denote 〈z〉β = dk · · · d0, and such

that z = πβ(dk · · · d0) =
∑k

j=0 djβ
j .

Example 2.4.2 • The negative integer base β = −b, with b ≥ 2, forms a

CNS with the alphabet {0, . . . , b− 1}, see (Grünwald 1885).

• Base β = 3 with the alphabet {−1, 0, 1} forms a CNS, see (Knuth 1998).

• The Penney numeration system with base β = −1± i and digit set {0, 1}
forms a CNS, see (Penney 1964).

Let Mβ(X) = Xg + bg−1X
g−1 + · · · + b0 be the minimal polynomial of

β. The norm of β is N(β) = |b0|. A set R ⊂ Z[β] is a complete residue

system for Z[β] modulo β if every element of Z[β] is congruent modulo β to

a unique element of R.

It is classical (Theorem of Sylvester) that a complete residue system of

elements of Z[β] modulo β contains N(β) elements, for instance the set

Aβ = {0, . . . , N(β)− 1}.

Proposition 2.4.3 Suppose that every element of Z[β] has a finite integer

representation in the CNS (β,A). Then this representation is unique if, and

only if, A is a complete residue system for Z[β] modulo β, that contains zero.

Proof Suppose that the representation of z ∈ Z[β] is dk · · · d0. Then z ∼ d0

(mod β), thus A must contain a complete residue system modulo β.

Now suppose that two digits c and d of A are congruent modulo β. Then

c− d = eβ for some e in Z[β]. Let 〈e〉β = ek · · · e0. Then c = eβ + d, so c

has two representations, c itself, and ek · · · e0d.
Conversely, suppose that there exists z ∈ Z[β] with two different rep-

resentations, dk · · · d0 and c` · · · c0. One can suppose that k ≥ `, and set

cj = 0 for `+1 ≤ j ≤ k. Then the polynomial (dk − ck)Xk + · · ·+(d0− c0)
vanishes at X = β, and it is thus divisible by the minimal polynomial

Mβ(X). Contradiction, since |d0 − c0| < N(β).

Given β and A a complete residue system, a word dk · · · d0 with dj in
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A is a representation of z ∈ Z[β] if d0 ∼ z (mod β) and dk · · · d1 is the

representation of (z − d0)/β. Thus we define

Φβ : Z[β] → Z[β] (2.15)

z 7→ z − d
β

with d ∼ z (mod β).

The digits dj in the representation of z are given by dj = Φj
β(z) (mod β).

Thus the representation of z in the system (β,A) is finite if, and only if,

the iterates Φj
β(z), j ≥ 0, eventually reach 0.

Remark that all words of A∗ are admissible.

Proposition 2.4.4 If (β,A) is a canonical numeration system then

(i) β and all its conjugates have moduli greater than 1

(ii) β has no positive real conjugate.

Proof (i) Suppose that there is a conjugate βi with |βi| < 1. Let z be

in Z[β] with 〈z〉β = dk · · · d0, dj in A. Let zi =
∑k

j=0 djβ
j
i . Set mA =

max(|a|, a ∈ A). Then |zi| < mA/(1− |βi|), and so there exist elements in

Z[β] with no representation in (β,A).

(ii) Let βi be a conjugate of β which is real and positive. Suppose −1 could

be represented in the system as −1 =
∑k

j=0 djβ
j . Then −1 =

∑k
j=0 diβ

j
i ,

which is impossible.

Note that (ii) implies that if (β,A) is a CNS then the constant term of

the minimal polynomial is positive.

An element z in Q(β) has a representation 〈z〉β = dk · · · d0.d−1d−2 · · · in

the CNS (β,A) if z =
∑k

i=−∞ diβ
i with di in A. The following result is

similar to the results in integer and non-integer real base, see (Gilbert 1981,

Gilbert 1991).

Proposition 2.4.5 If (β,A) is a canonical numeration system then every

element of the field Q(β) has an eventually periodic representation in (β,A).

2.4.2 Normalisation in canonical numeration systems

The results presented in this section primarily appeared in

(Grabner, Kirschenhofer, and Prodinger 1998), (Thuswaldner 1998),

(Safer 1998), (Scheicher and Thuswaldner 2004).

Let (β,A) be a canonical numeration system. Let C ⊃ A be a finite

alphabet of digits in Z[β]. The normalization on C in the system (β,A) is
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the function

νβ,C : C∗ −→ A∗ ck · · · c0 7−→ 〈
k∑

j=0

cjβ
j〉β .

As in the previous sections, we define the zero automaton, on a finite sym-

metric alphabet D of digits in Z[β], that contains A. The zero automaton

Zβ,D on D is defined as follows: Zβ,D = ( Z[β], D,E, {0}, {0} ) where the

transitions in E are defined by

∀s, t ∈ Z[β], ∀a ∈ D, s a−−→
Zβ,D

t if, and only if, t = β s+ a . (2.16)

This automaton accepts the writings of 0 in base β on the alphabet D. Let

mD = max{|a| | a ∈ D} and let QD = {s ∈ Z[β] | |s| ≤ mD

|β|−1}.

Proposition 2.4.6 The trim part of Zβ,D contains only states belonging

to QD.

Proof As D contains A and is symmetrical, every element of Z[β] is acces-

sible in Zβ,D.

Suppose that ek · · · e0 is a word of D∗ such that
∑k

j=0 ejβ
j = 0. Then,

for 1 ≤ j ≤ k, sj = βj−1ek + · · ·+ ek−j+1 = −β−j+1(βj−2ej−2 + · · ·+ e0),

thus |sj | < mD

|β|−1 , and ek · · · e0 is the label of a path

0
ek−→ s1

ek−1−→ · · · sk
e0−→ sk+1 = 0

in Zβ,D with all the states in QD.

Lemma 2.4.7 If β and all its conjugates have moduli greater than 1 then

for every finite alphabet D the zero automaton Zβ,D is finite.

Proof Recall that the norm defined on Z[β] ' Z[X ]/(Mβ) is defined by

||P (X)|| = max1≤i≤g |P (βi)|, see (2.12). Let s = s(β) be in QD. Then for

1 ≤ i ≤ g, |s(βi)| < mD

|βi|−1 . Since the elements of QD are bounded in norm

in the discrete lattice Z[β], QD is finite and the automaton Zβ,D is finite.

We now consider the normalisation from an alphabet C in the CNS (β,A).

Let D be a symmetrized alphabet of digits in Z[β] containing the set {c−a |
c ∈ C, a ∈ A}. As explained in the integer base case, one can associate with

the zero automaton Zβ,D a converter Cβ(C×A). The transitions are defined

by
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s
c|a−−−→

Cβ(C×A)
t if, and only if, s

c−a−−−−→
Zβ,D

t .

Lemma 2.4.8 If A is a complete residue system modulo β then the con-

verter Cβ(C×A) is input co-deterministic.

Proof By definition there is an edge s
c|a−→ t in Cβ(C×A) if, and only

if, βs + c = t + a. If there is another edge s′
c|a′

−→ t in Cβ(C×A), then

β(s− s′) = a−a′, which is impossible since A is a complete residue system.

It is thus more natural to define a right sequential letter-to-letter trans-

ducer, the normaliser Nβ(C), with

t
c|a−−−→

Nβ(C)
s if, and only if, (−s) c|a−−−→

Cβ(C×A)
(−t) .

Let ck · · · c0 ∈ C∗. Setting s0 = 0, there is a unique path in Nβ(C)

sk+1
ck|dk←− sk

ck−1|dk−1←− sk−1 · · ·
c1|d1←− s1

c0|d0←− s0

and
k∑

j=0

cjβ
j = (

k∑

j=0

djβ
j) + sk+1β

k+1. (2.17)

Remark 2.4.9 If any element of QD has a finite integer representation in

the system (β,A) (with A a complete residue system modulo β) then the

normaliser Nβ(C) converts any element z in Z[β] with a representation in

C∗ into its (β,A) integer representation.

Proof If z =
∑k

j=0 cjβ
j , then there exists a path in Nβ(C) satisfying (2.17),

and 〈z〉β = 〈sk+1〉βdk · · · d0.

Remark 2.4.10 The normaliser Nβ(C) can be used as an algorithm to

represent any z ∈ Z[β] in the system (β,A) (with A a complete residue

system modulo β). In fact, given z, there exists a C such that z belongs to

C. Feed the transducer with z as input. There exists a unique path

Φk+1
β (z)

0|dk←− Φk
β(z)

0|dk−1←− Φk−1
β (z) · · · 0|d1←− Φβ(z)

z|d0←− 0

and 〈z〉β = dk · · · d0 if, and only if, Φk+1
β (z) = 0.
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From Proposition 2.4.4, Lemma 2.4.7 and Lemma 2.4.8 follows the fol-

lowing result.

Proposition 2.4.11 If the system (β,A) is a canonical numeration system

then the right sequential normaliser Nβ(C) is finite for every alphabet C.

2.4.3 Bases for canonical numeration systems

In general, it is difficult to determine which numbers are suitable bases for

a CNS. However, several results are known. In the particular case where

β is a Gaussian integer and A is an alphabet of natural integers there is a

nice characterisation due to (Kátai and Szabó 1975).

Theorem 2.4.12 Let β be a Gaussian integer of norm N , and let A =

{0, . . . , N − 1}. Then (β,A) is a canonical numeration system for the com-

plex numbers if, and only if, β = −n± i, for some n ≥ 1 (and N = n2).

It is noteworthy that any complex number has a representation — not

necessarily unique — in this system.

Quadratic CNS have been characterised in (Kátai and Kovács 1981)

and in (Gilbert 1981). In (Brunotte 2001, Brunotte 2002) are charac-

terised all CNS whose bases are roots of trinomials. In the general case

(Akiyama and Pethő 2002) have given an algorithm to decide whether a

number β is the base of a CNS.

Theorem 2.4.13 Let β be an algebraic integer with minimal polynomial

Mβ(X) = Xg + bg−1X
g−1 + · · · + b0. If one of the following properties is

satisfied then β is a base for a CNS:

(i) b0 ≥ 2 and b0 ≥ b1 ≥ · · · ≥ bg−1 ≥ 1

(ii) b2 ≥ 0, . . . , bg−1 ≥ 0, 1 +
∑g−1

i=0 bi ≥ 0 and b0 > 1 +
∑g−1

i=1 |bi|.

Part (i) is due to (Kovács 1981), and Part (ii) has been obtained by

(Scheicher and Thuswaldner 2004) using automata.

2.4.4 Shift radix systems

The concept of shift radix system was introduced

in (Akiyama, Borbély, Brunotte, et al. 2005) to unify canonical nu-

meration systems and β-expansions. Although these two numeration

systems are quite different, they are close relatively to some finiteness

properties, which means that all numbers of a certain set admit finite

expansions.
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Definition 2.4.14 Let r = (r1, . . . , rd) be an element of Rd. Define a

mapping µr : Zd → Zd by

µr((z1, . . . , zd)) = (z2, . . . , zd,−br1z1 + · · ·+ rdzdc).

We say that µr has the finiteness property if for every z in Zd there exists

a k such that µk
r (z) = 0. In that case (Z, µr) is called a shift radix system

or SRS.

2.4.4.1 Connection with Pisot numbers and the (F) property

In (Akiyama and Scheicher 2005) it is indicated that the origin of SRS can

be found in (Hollander 1996).

Theorem 2.4.15 (Akiyama, Borbély, Brunotte, Pethő, and

Thuswaldner 2005) Let β > 1 be an algebraic integer with minimal poly-

nomial

Mβ(X) = Xg + bg−1X
g−1 + · · ·+ b0 ∈ Z[X ].

Write Mβ(X) = (X − β)(Xg−1 + rg−1X
g−2 + · · · + r1) and let r =

(r1, . . . , rg−1). Then β satisfies the (F) property if, and only if, r gives

a (g − 1)-dimensional SRS.

Proof It is easy to see that β satisfies the (F) property if, and only if,

each element of Z[β] ∩ [0,∞) has a finite greedy β-expansion. For 1 ≤ i ≤
g − 1, ri = −( bi−1

β + · · · + b0
βi ) and rg = 1. The ring Z[β] is generated

by {1, β, . . . , βg−1} as a Z-module; the same is true for {r1, . . . , rg}. Thus

every element z of Z[β] ∩ [0, 1) can be expressed as z =
∑g

i=1 ziri. The

β-transformation of z can be written τβ(z) =
∑g

i=1 zi+1ri with zg+1 such

that 0 ≤ z2r1 + · · ·+ zg+1rg < 1, more precisely

zg+1 = −bz2r1 + · · ·+ zgrg−1c.

Then µr(z1, . . . , zg−1) = (z2, . . . , zg).

The roots of the polynomial Xg−1 + rg−1X
g−2 + · · ·+ r1 have modulus

less than one, and it can be proved that the SRS algorithm associated

with (r1, . . . , rg−1) always leads to a periodic orbit, and thus that every

positive element of Z[β] has an eventually periodic greedy β-expansion.

The same can be proved for every positive element of Q[β], which reproves

Theorem 2.3.20.



Number representation and finite automata 99

2.4.4.2 Connection with canonical numeration systems

Theorem 2.4.16 (Akiyama, Borbély, Brunotte, Pethő, and

Thuswaldner 2005) The polynomial Xg + bg−1X
g−1 + · · · + b0 gives a

CNS if, and only if,

r = (
1

b0
,
bg−1

b0
, . . . ,

b1
b0

)

gives a g–dimensional SRS.

Proof Take z in Z[β]. Then z can be written as z =
∑g−1

i=0 ziβ
i with zi in Z.

The mapping Φβ (see (2.15)) can be extended as a mapping Φ̃β : Zg → Zg

defined as

Φ̃β((z0, . . . , zg−2, zg−1)) = (z1 − qb1, . . . , zg−1 − qbg−1,−q))

with q = bz0/b0c.
For easier notation, set bg = 1. The basis {1, β, . . . , βg−1} can be replaced

by the basis {w1, . . . , wg} with wj =
∑g

i=g−j+1 bjβ
i+j−g−1 for 1 ≤ j ≤ g.

Now, if z =
∑g

i=1 yjwj , we can define a map Ψβ playing the same role as

Φβ by

Ψβ(z) = (

g−1∑

i=1

yj+1wj)− wgb
b1yg + · · ·+ bgy1

b0
c.

This maps is extended as a mapping Ψ̃β : Zg → Zg defined by

Ψ̃β((y1, . . . , yg−1, yg)) = (y2, . . . , yg,−b
b1yg + · · ·+ bgy1

b0
c)

and Ψ̃β is just the SRS mapping µr.

2.5 Representation in rational base

We now turn to the problem of the representation of numbers, integers or

reals, again in a base which is not an integer but a rational number — and

thus certainly not a Pisot number, as it has been the case in most of the

preceeding sections. The greedy algorithm which was ubiquitous there and

underlying almost every construction is now inappropriate or, to tell the

truth, one cannot tell anything of its outcome. We shall make use instead

of an algorithm which is reminiscent of the division algorithm defined with

integer base and which produces, as the division algorithm, the digits of the

representations from right to left.

All the results of this section are taken, and their presentation is adapted,

from (Akiyama, Frougny, and Sakarovitch 2008).
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2.5.1 Representation of integers

Let p and q be two co-prime integers, p > q > 1 . The definition of the

numeration system in base
p
q itself, and thus the evaluation map, will follow

from the algorithm which computes the representation of the integers.

2.5.1.1 The modified division algorithm

Let N be any positive integer; let us write N0 = N and, for i > 0, write

qNi = pNi+1 + ai (2.18)

where ai is the remainder of the division of qNi by p, and thus belongs

to Ap = {0, . . . , p − 1} . Since Ni+1 is strictly smaller than Ni, the divi-

sion (2.18) can be repeated only a finite number of times, until eventually

Nk+1 = 0 for some k. The sequence of successive divisions (2.18) for i = 0

to i = k is thus an algorithm — that in the sequel is referred to as the

Modified Division, or MD, algorithm — which given N produces the digits

a0, a1, . . . , ak, and it holds:

N =

k∑

i=0

ai

q

(
p

q

)i

. (2.19)

We will say that the word ak · · ·a0 , computed from N from right to left,

that is to say least significant digit first, is a p
q -representation of N .

Let U p
q

be the sequence defined by:

U p
q

= {ui =
1

q

(
p

q

)i

| i ∈ Z} .

We will say that U p
q
, together with the digit alphabet Ap is the numeration

system in base p
q or the p

q numeration system. If q = 1 , it is exactly

the classical numeration system in base p. But, on the other hand, this

definition does not match the one we have given for the numeration system

in base β in Section 2.3: U p
q

is not the sequence of powers of
p
q but rather

these powers divided by q and the digits are not the integers smaller than
p
q

but rather the integers whose quotient by q is smaller than
p
q . The evaluation

map π p
q
: Ap

∗ → Q is defined accordingly: for every word w of Ap
∗, we have

w = ak ak−1 · · · a1 a0 7−→ π p
q

(w) =

k∑

i=0

aiui =

k∑

i=0

ai

q

(
p

q

)i

. (2.20)

With the same proof as for integer base system (cf. Lemma 2.2.1), we have:

Lemma 2.5.1 The restriction of π p
q

to Ap
k is injective, for every k.



Number representation and finite automata 101

As for integer base, π p
q

is not injective on the whole Ap
∗ since for any u

in Ap
∗ and any integer h it holds: π p

q

(
0hu

)
= π p

q
(u) . On the other hand,

Lemma 2.5.1 implies that this is the only possibility and we have:

π p
q

(u) = π p
q

(v) and |u| > |v| =⇒ u = 0h v with h = |u| − |v| .
(2.21)

Theorem 2.5.2 Every non-negative integer N has a
p
q -representation

which is an integer representation. It is the unique finite
p
q -representation

of N .

Proof Let ak · · ·a0 be the
p
q -representation given to N by the MD algo-

rithm, and suppose that there exists another finite representation of N in

the system U p
q
, of the form e`e`−1 · · · e0.e−1 · · · e−m with e−m 6= 0 . Then

q

(
p

q

)m

N =
∑̀

i=−m

ei

(
p

q

)m+i

=

k∑

i=0

ai

(
p

q

)m+i

and therefore π p
q

(e` · · · e0e−1e−2 · · · e−m) = π p
q

(akak−2 · · ·a00
m) . Contra-

diction between (2.21) and e−m 6= 0 .

This unique finite
p
q -representation of N (under the condition that the

leading digit is not 0) will be called the p
q -expansion of N and writ-

ten 〈N〉 p
q

. By convention and as in the three preceeding sections, the
p
q -expansion of 0 is the empty word ε.

Example 2.5.3 Let p = 3 and q = 2, then A3 = {0, 1, 2} — this will be

our main running example in this section. Table 2.2 gives the 3
2-expansions

of the twelve first non-negative integers.

ε 0 2120 6
2 1 2122 7

21 2 21011 8
210 3 21200 9
212 4 21202 10

2101 5 21221 11

Table 2.2. The 3
2 -expansion of the twelve first integers.

We let L p
q

denote the set of
p
q -expansions of the non-negative integers:

L p
q

= {〈N〉 p
q
| N ∈ N} .
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In contrast with the three preceeding sections, and as we shall see below,

L p
q

is not a rational set. Before getting to this point, let us note that the

same order properties as for integer base systems hold for the
p
q numeration

system, provided only the words in L p
q

are considered.

Proposition 2.5.4 Let v and w be in L p
q
. Then v � w if, and only if,

π p
q

(v) 6 π p
q

(w) .

Proof Let v = ak · · · a0 and w = b` · · · b0 be the
p
q -expansions of the

integers m = π p
q

(v) and n = π p
q

(w) respectively. By Theorem 2.5.2, we

already know that v = w if, and only if, π p
q

(v) = π p
q

(w) . The proof goes

by induction on `, which is (by hypothesis) greater than or equal to k. The

proposition holds for ` = 0.

Let us write v′ = ak · · · a1 and w′ = b` · · · b1 , and m′ = π p
q

(v′) and

n′ = π p
q

(w′) are integers. It holds:

n−m =
p

q
(n′ −m′) +

1

q
(b0 − a0) .

Now v ≺ w implies that either v′ ≺ w′ or v′ = w′ and a0 < b0 . If

v′ ≺ w′ , then n′ −m′ > 1 by induction hypothesis and thus n −m > 0

since b0 − a0 > −(p− 1) . If v′ = w′ , then n−m = 1
q (b0 − a0) > 0 .

Corollary 2.5.5 Let v and w be in 0∗L p
q

and of equal length. Then v ≤ w
if, and only if, π p

q
(v) 6 π p

q
(w) .

It is to be noted also that these statements do not hold without the

hypothesis that v and w belong to L p
q

(to 0∗L p
q

respectively). For instance,

π 3
2

(10) = 3/4 < π 3
2

(2) = 1 and π 3
2

(2000) = 27/16 < π 3
2

(0212) = 4 .

2.5.1.2 The set of
p
q -expansions of the integers

It is a very intriguing, and totally open, question to characterise the set L p
q
.

As far as now, we can only make basic observations.

By construction, L p
q

is prefix-closed, that is, any prefix of any word of L p
q

is in L p
q
. A simple look at Table 2.2 shows that it is not suffix-closed. In

fact, every word of Ap
∗ is a suffix of some words in L p

q
. More precisely, we

have the following statement.

Proposition 2.5.6 For every integer k and every word w in Ap
k, there

exists a unique integer n, 0 6 n < pk such that w is the suffix of length k

of the
p
q -expansion of all integers m congruent to n modulo pk.
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Proof Given any integer n = n0 , the division (2.18) repeated k times

yields:

qk n0 = pk nk + qk π p
q

(ak−1ak−2 · · · a0) . (2.22)

If we do the same for another integer m = m0 and perform the subtraction

on the two sides of Equation (2.22), it comes:

qk (n0 −m0) = pk (nk −mk)

+ qk
(
π p

q
(ak−1ak−2 · · ·a0)− π p

q
(bk−1bk−2 · · · b0)

)
.

As qk is prime with pk, and using Lemma 2.5.1, it comes:

n−m ≡ 0 (mod pk) ⇐⇒ ak−1ak−2 · · · a0 = bk−1bk−2 · · · b0 . (2.23)

Since there are exactly pk words in Ap
k , each of them must appear once

and only once when n ranges from 0 to pk − 1 and (2.23) gives the second

part of the statement.

It follows that a word w of length k is a right context for the pq -expansions

〈n〉 p
q

and 〈m〉 p
q

of two integers n and m for L p
q
, that is, both 〈n〉 p

q
w

and 〈m〉 p
q
w are in L p

q
, if, and only if, n and m are congruent mod-

ulo qk. This implies immediately that the coarsest right regular equiva-

lence that saturates L p
q

is the identity, hence in particular is not of finite

index. A classical statement in formal language theory (see for instance

(Hopcroft, Motwani, and Ullman 2006)) then implies:

Corollary 2.5.7 If q 6= 1 , then L p
q

is not a regular language.

Along the same line it is easy to give a more precise statement on suffixes

that are powers of a given word.

Lemma 2.5.8 Let w be in L p
q

and w = uv be a proper factorization of w.

Then uvk belongs to L p
q

only if q(k−1)|v| divides π p
q

(w)− π p
q

(u) .

Proof The word uvk belongs to L p
q

only if

π p
q

(
uvk

)
− π p

q

(
uvk−1

)
=

(
p

q

)|v|
(π p

q

(
uvk−1

)
− π p

q

(
uvk−2

)
) = · · ·

=

(
p

q

)(k−1)|v|
(π p

q
(uv)− π p

q
(u))

is in Z. And this is possible only if q(k−1)|v| divides π p
q

(uv) − π p
q

(u) .
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Lemma 2.5.8 will be used in the sequel to show that the closure of L p
q

does not contain eventually periodic infinite words; combined with the

classical ‘pumping lemma’ (see (Hopcroft, Motwani, and Ullman 2006) and

Lemma 1.3.14), it implies another statement related to formal language

theory:

Corollary 2.5.9 If q 6= 1 , then L p
q

is not a context-free language.

2.5.1.3 The evaluator and the converters

We build an evaluator and zero automata in a similar way as the one we

followed for integer base. Let
p
q be the base fixed as before but the digits

be a priori any integer, positive or negative. The evaluator Z p
q

has the set

of q-decimal numbers, that is, Z[ 1q ], as set of states, it reads (from left to

right) the numbers (written on the ‘alphabet’ Z), and runs in such a way

that, at every step of the reading, the reached state indicates the value of

the portion of the number read so far. The initial state of Z p
q

is thus 0 and

its transitions are of the form:

∀s, t ∈ Z[
1

q
] , ∀a ∈ Z s

a−−→
Z p

q

t if, and only if, q t = ps+ a ,

(2.24)

from which we get the expected behaviour:

∀w ∈ {Z}∗ 0
w−−→
Zp

q

π p
q

(w) .

It follows from (2.24) that Z p
q

is both deterministic and co-deterministic.

As above, we shall make use of finite parts of Z p
q
. First, we restrict the

alphabet to be a finite subset of Z: Bd = {−d, . . . , d} with d ≥ p− 1 and

thus Ap ⊂ Bd . Second, we choose 0 as unique final state and we get a zero

automaton Z p
q

,d =
(

Z[ 1q ], Bd, E, {0}, {0}
)

where the transitions in E are

those defined by (2.24). This automaton accepts thus the writings of 0 (in

base
p
q and on the alphabet Bd). It is still infinite but we have the following.

Proposition 2.5.10 The trim part of Z p
q

,d is finite and its set of states is

H = {−h, . . . , h} where h =
⌊

d−q
p−q

⌋
.

Proof As Bd contains Ap and is symmetrical, every z in Z is accessible

in Z p
q

,d. On the other hand, no state in Z[ 1q ] \ Z is co-accessible to 0

in Z p
q

,d.

If m is a positive integer strictly larger than (d−q)/(p−q), the ‘smallest’

reachable state from m, that is, the smallest integer which is larger than, or
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4̄ 3̄ 2̄ 1̄ 0 1 2 3 4

7̄ 5̄ 3̄ 1̄ 1 3 5 7

5̄ 3̄ 1̄ 1 3 5 7 9

4 3 2 1 0 1̄ 2̄ 3̄ 4̄

4 3 2 1 0 1̄

4̄3̄2̄1̄01

4 24̄

4 3 2 1 0 1̄ 2̄
2 1 0 1̄ 2̄ 3̄ 4̄

1̄ 0
1 2

2̄ 1̄
0 1

3̄ 2̄
1̄ 0

Fig. 2.18. A partial view of Z 3
2

,4.

The upper row consists of the states whose labels are integers; the row below of
the states whose labels are of the form n/2, with odd n; the next row of those
whose labels are of the form n/4, with odd n; etc. For the readibility of the figure,
not all transitions labelled in B4 are drawn.

equal to, 1
q (mp−d), is also larger than, or equal to,m: m is not co-accessible

in Z p
q

,d and the same is true if m is strictly smaller than −(d− q)/(p− 1).

Conversely, if m is a positive integer smaller than (d − q)/(p − q), then

the integer k = p + (m − 1)(p − q) is smaller than, or equal to, d and

m
k−−→ (m−1) is a transition in Z p

q
,d. Hence, by induction, a path from m

to 0 in Z p
q

,d.

By definition, the trim part of Z p
q

,d is the strongly connected component

of 0. Figure 2.18 shows Z 3
2 ,4.

Let Z p
q

,d denote the automaton reduced to its trim part only, with set of

states H . And as above again, the automaton Z p
q

,d will serve as the base

for the construction of a series of converters and normalisers exactly as in

the case of integer base.

Figure 2.19 (a) shows the right sequential converter that realises addition

in the 3
2 numeration system; Figure 2.19 (b) shows the right sequential

converter on the alphabet {1, 0, 1, 2} in the 3
2 numeration system.

Remark 2.5.11 A converter reads words on a digit alphabet C, and out-

put an equivalent
p
q -representation on another alphabet A, even for words

v such that π p
q

(v) is not an integer.

As a corollary to the construction of the converter, it is easy to build a

letter-to-letter right sequential transducer that realizes the successor func-

tion for the p
q numeration system.
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2 1 0

21 2

0 |1
1 |2

4 |0

0 |2

3 |0
4 |1

2 |0
3 |1
4 |2

1 |0
2 |1
3 |2

0 |0
1 |1
2 |2

(a) The converter for the addition.

0 1

2 |0

1 |2

1 |0
0 |1
1 |2

0 |0
1 |1
2 |2

(b) The converter on {−1, 0, 1, 2}.

Fig. 2.19. Two converters for the 3
2 numeration system.

2.5.2 Representation of the reals

Every infinite word u = (ai)i≥1 in AN
p is given a real value x by the evalu-

ation map π p
q
:

u = a1 a2 · · · 7−→ x = π p
q

(u) =
∞∑

i=1

ai

q

(
p

q

)−i

and u is called a
p
q -representation of x. We use the same conventions as in

the preceeding sections and we have:

∀u = (ai)i≥1 ∈ Ap
N π p

q
(.u) = lim

n→+∞

(
q

p

)n

π p
q

(a1 a2 · · · an) , (2.25)

∀u ∈ Ap
N , ∀w ∈ Ap

∗ πp (.wu) =

(
q

p

)|w|
(πp (w) + πp (.u)) .

Proposition 2.5.12 The map π p
q
: Ap

N → R is continuous.

Our purpose here is to associate with every real number a p
q -

representation which will be as canonical as possible. In contrast with

what is done in integer or Pisot base numeration systems, where the canon-

ical representation — the greedy expansion — is defined by an algorithm

which computes it for every real, we set a priori what are these canonical
p
q -expansions.

2.5.2.1 Construction of the tree T p
q

The free monoid Ap
∗ is classically represented as the nodes of the (infinite)

full p-ary tree: every node is labeled by a word in Ap
∗ and has p children,

every edge between a node and its children is labeled by one of the letter

of Ap and the label of a node is precisely the label of the (unique) path that

goes from the root to that node.
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As the language L p
q

is prefix-closed, it can naturally be seen as a subtree

of the full p-ary tree, obtained by cutting some edges. This will form the

tree T p
q

(after we have changed the label of nodes from words to the numbers

represented by these words). This tree, or more precisely its infinite paths,

will be the basis for the representation of reals in the p
q number system.

We give now an ‘internal’ description of T p
q
, based on the definition of a

family of maps from N to N, which will proved to be effective for the study

of infinite paths.

Definition 2.5.13 (i) For each a in Ap, let ψa : N → N be the partial

map defined by:

∀n ∈ N ψa(n) =

{
1
q (pn+ a) if 1

q (pn+ a) ∈ N

undefined otherwise

We write e(n) = {a ∈ Ap | ψa(n) is defined} , Me(n) = max{e(n)} for the

largest digit for which ψa(n) is defined, and me(n) = min{e(n)} for the

smallest digit with the same property.

(ii) The tree T p
q

is the labeled infinite tree (where both nodes and edges

are labeled) constructed as follows. The nodes are labeled in N, and the

edges in A, the root is labeled by 0. The children of a node labeled by n

are nodes labeled by ψa(n) for a in e(n), and the edge from n to ψa(n)

is labeled by a .

(iii) We call path label of a node s of T p
q
, and write p(s), the label of the

path from the root of T p
q

to s. We denote by I p
q

the subtree of T p
q

made of

nodes whose path label does not begin with a 0.

The very way T p
q

is defined implies that if two nodes have the same label,

they are the root of two isomorphic subtrees of T p
q

and it follows from

Proposition 2.5.6 that the converse is true, that is two nodes which hold

distinct labels are the root of two distinct subtrees of T p
q
. As no two nodes

of I p
q

have the same label, it comes:

Proposition 2.5.14 If q 6= 1 no two subtrees of I p
q

are isomorphic.

Definition 2.5.13 and the MD algorithm imply directly the following facts.

Lemma 2.5.15 For every n in N, it holds:

(i) me(n) = e(n)∩{0, 1, . . . , q−1} and Me(n) = e(n)∩{p−q, . . . , p−1} .
(ii) a ∈ e(n) and a+ q ∈ Ap =⇒ a+ q ∈ e(n) .

(iii) a, a+ q ∈ e(n) =⇒ ψa+q(n) = ψa(n) + 1 .

(iv) me(n+ 1) = Me(n) + q − p and ψme(n+1)(n+ 1) = ψMe(n)(n) + 1 .
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And finally:

(v) The label of every node s of T p
q

is π p
q

(p(s)).

We denote by W(n) (resp. by w(n) ) the label of the infinite path that

starts from a node with label n and that follows always the edges with

the maximal (resp. minimal) digit label. Such a word is said to be a

maximal word (resp. a minimal word) in T p
q
. We note: t p

q
= W(0) and

ω p
q

= π p
q

(
. t p

q

)
. (It holds ω p

q
< p−1

p−q .)

The infinite word t p
q

is the maximal element with respect to the lexico-

graphic order of the label of all infinite paths of T p
q

that start from the root.

Notice that, for any rational
p
q , 0ω is the minimal element with respect to

the lexicographic order of the label of all infinite paths of T p
q

and that, if

q = 1, that is, in an integer base, W(n) = (p − 1)ω , and w(n) = 0ω for

every n in N.

Example 2.5.16 For
p
q = 3

2, t 3
2

= 212211122121122121211 · · · .

We call branching a node v of T p
q

if it has at least two children, that is,

if e(π p
q

(p(v))) has at least two elements. Direct computations yields the

following.

Lemma 2.5.17 Let v be any branching node in T p
q
, and n = π p

q
(p(v))

its label. Let a1 and b1 = a1 + q be in e(n) and let m1 = ψa1(n) and

m2 = ψb1(n) = m1+1 . Write W(m1) = a2 a3 · · · and w(m2) = b2 b3 · · · .
It then holds:

π p
q

(.a1 a2 a3 · · ·) = π p
q

(.b1 b2 b3 · · ·) . (2.26)

2.5.2.2 The
p
q -expansions of real numbers

Notation 2.5.18 Let us denote by W p
q

the subset of Ap
N that consists of

the labels of infinite paths starting from the root of T p
q
.

Note that the finite prefixes of the elements ofW p
q

are the words in 0∗L p
q

.

A direct consequence of Lemma 2.5.8 is the following.

Proposition 2.5.19 If q > 1, then no element of W p
q

is eventually peri-

odic, but 0ω.

As announced, the set of
p
q -expansions is defined a priori and not algo-

rithmically.

Definition 2.5.20 The set of expansions in the
p
q numeration system

is W p
q
.
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In other words, an element u of W p
q

is a
p
q -expansion of the real x =

π p
q

(u) and conversely any element of Ap
N which does not belong to W p

q
is

not a
p
q -expansion. The following Lemma 2.5.21 and Theorem 2.5.23 tell

that
p
q -expansions are not too many nor too few respectively and vindicate

the definition.

Lemma 2.5.21 The map π p
q
: W p

q
→ R is order preserving.

Proof Let u = (ai)i≥1 and v = (bi)i≥1 be in W p
q
. If u ≤ v then,

for every k in N, a1 a2 · · · ak ≤ b1 b2 · · · bk and then, by Corollary 2.5.5,

π p
q

(a1 a2 · · · ak) 6 π p
q

(b1 b2 · · · bk) . By (2.25), π p
q

(.u) 6 π p
q

(.v) .

By contrast, it follows from the examples given after Corollary 2.5.5 that

the map π p
q
: Ap

N → R is not order preserving.

Notation 2.5.22 Let X p
q

= π p
q

(
W p

q

)
. The elements of X p

q
are non-

negative real numbers less than or equal to ω p
q
:

X p
q
⊆ [0,ω p

q
] .

Theorem 2.5.23 Every real in [0,ω p
q
] has at least one

p
q -expansion, that

is, X p
q

= [0,ω p
q
] .

Proof By definition, the set W p
q

is the set of infinite words w in Ap
N

such that any prefix of w is in 0∗L p
q

. As 0∗L p
q

is prefix-closed — since

L p
q

is prefix-closed and the empty word belongs to L p
q

— W p
q

is closed

(see (Perrin and Pin 2003)) in the compact set Ap
N, hence compact. Since

π p
q

is continuous, X p
q

is closed.

Suppose that [0,ω p
q
] \X p

q
is a non-empty open set, containing a real t.

Let y = sup{x ∈ X p
q
| x < t} and z = inf{x ∈ X p

q
| x > t}. Since X p

q

is closed, y and z both belong to X p
q
. Let u = a1 a2 · · · be the largest

p
q -expansion of y and v = b1 b2 · · · the smallest

p
q -expansion of z (in the

lexicographic order). Of course, u < v since u 6= v . Let a1 · · · aN be the

longest common prefix of u and v (with the convention thatN can be 0). Set

m = π p
q

(a1 · · · aN .), n = π p
q

(a1 · · · aNaN+1.) and r = π p
q

(a1 · · · aNbN+1.).

Then

u ≤ a1 · · · aNaN+1W(n) < a1 · · ·aNbN+1w(r) ≤ v .

By the choice of v, π p
q

(.a1 · · · aNaN+1W(n)) < z , and by the choice of u,

u = a1 · · · aNaN+1W(n) . Symmetrically, v = a1 · · · aNbN+1w(r) .

If aN+1 +q < bN+1 , then there exists a digit c in e(m) such that aN+1 +
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q 6 c < bN+1 . For any w′ in Ap
N such that w = a1 · · · aN cw′ is in W p

q

(and there exist some), we have

u < w < v .

Whatever the value of π p
q

(.w), y or z, we have a contradiction with the

extremal choice of u and v.

If aN+1 + q = bN+1, then r = n+ 1 and z = y by Lemma 2.5.17, hence a

contradiction. And thus X p
q

= [0,ω p
q
] .

A word inW p
q

is said to be eventually maximal (resp. eventually minimal)

if it has a suffix which is a maximal (resp. minimal) word.

The following statement shows that in spite of the non-rationality of W p
q

the
p
q -expansions of reals behave very much as the expansions obtained by

a greedy algorithm in an integer or in a real base.

Theorem 2.5.24 The set of reals in X p
q

that have more than one
p
q -

expansion is countably infinite in bijection with the set of branching nodes

in T p
q
. The

p
q -expansions of such reals are eventually maximal or even-

tually minimal. If p > 2q − 1 , then no real number has more than two
p
q -expansions.

Remark 2.5.25 In contrast with the classical representations of reals, the

finite prefixes of a p
q -expansion of a real number, completed by zeroes, are

not
p
q -expansions of real numbers (though they can be given a value by the

function π of course), that is to say, if a non-empty word w is in Lp
q
, then

the word w 0ω does not belong to W p
q

.

It is an open problem, a challenging one, to prove that the hypothesis

p > 2q − 1 in Theorem 2.5.24 is not necessary and that a real has never

more than two
p
q -expansions (with the meaning we have given to it) for any

rational
p
q .

2.6 A primer on finite automata and transducers

The matter developed in this chapter calls for definitions and results on

finite automata and transducers that go beyond those given in Chapter 1

and we have gathered them in this section.

The notation follows the one adopted in (Sakarovitch 2003), where the

proofs of the statements can be found as well — unless otherwise stated.

The definitions are sometimes made simpler for their intended scope is the

content of this chapter only.
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2.6.1 Automata

Let us first complete the definitions and results on finite automata given at

Chapter 1. We call recognisable or rational the languages of A∗ recognised

by a finite automaton — that were rather called regular in Section 1.3

— and we denote this family by RatA∗. Since every finite automaton is

equivalent to a deterministic one, we have:

Theorem 2.6.1 RatA∗ is an effective Boolean algebra of languages.

The generating function of a language L of A∗ is the series

ΨL(X) =
∑

n∈N

`nX
n

where `n is the number of words of L of length n: `n = Card (L ∩An) .

A series Φ(X) is called a rational function if it is the quotient of two

polynomials P (X) and Q(X) of Z[X ]: Φ(X) = P (X)
Q(X) . A classical result in

algebra states that a series Φ(X) =
∑

n∈N
anX

n is rational if, and only if,

its coefficients an satisfy a linear recurrence relation with coefficients in Z.

The following result is not for nothing in the choice of rational rather than

regular for languages recognised by finite automata.

Theorem 2.6.2 (Chomsky and Miller 1958) The generating function

of a rational language is a rational function.

Proof Let A be a finite deterministic automaton (of dimension Q) which

recognises the language L and let M be the adjacency matrix of A.

Write l(n) for the vector of dimension Q whose p-th entry is the num-

ber of words of length n which label paths from state p to a final state in A:

`n = li(n) for the initial state i of A. As A is deterministic, it holds

∀n ∈ N l(n+ 1) = Ml(n) . (2.27)

By the Cayley–Hamilton Theorem, M is a zero of its characteristic polyno-

mial, that is:

Mk − z1 Mk−1 − · · · − zk−1 M− zk I = 0 ,

which by (2.27) yields a linear recurrence relation for the `(n) and thus for

their ith entries.

A language L of A∗ is said to have bounded growth if the coefficients of its

generating function are uniformly bounded, that is, if for every n there are

less than k words of length n in L, for a fixed integer k. If x, y, and z are

words in A∗, the language xy∗z is called a ray language. A ray language,
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or any finite union of ray languages, is rational and has bounded growth.

The following converse is folklore (see (Sakarovitch 2003) and see also in

Section 3.3.2, the proof of Theorem 3.3.16).

Proposition 2.6.3 A rational language L has bounded growth if and only

if it is a finite union of ray languages.

An automaton is said to be k-local if the end of any computation of

length k depends on its label only, and not on its origin. Remark that a

1-local automaton is deterministic.

2.6.2 Transducers

As defined in Chapter 1, a transducer T (from A∗ to B∗) is an automaton

whose transitions are labelled by pairs of words (elements of A∗×B∗). We

write T = (Q,A,B,E, I, T ) where E ⊆ Q×A∗×B∗×Q is the set of tran-

sitions and where I and T are subsets of Q which we consider as functions

from Q into B in view of forthcoming generalisations. The transducer T is

finite if E, and thus the useful part of Q, is finite.

The set of labels of successful computations, which we denote by |||T |||, is

a subset of A∗×B∗, that is, the graph of a relation from A∗ to B∗, the

relation realised by T . If T is finite, |||T ||| is a rational subset of A∗×B∗,
hence realises a rational relation. If the labels of the transitions of a (finite)

transducer T are projected on the first (resp. the second) component, we get

a (finite) automaton, which we call the (underlying) input automaton (resp.

the (underlying) output automaton) which recognises the domain (resp. the

image) of the relation |||T |||: both are rational languages of A∗ (resp. of B∗).
Remark also that morphisms (from a free monoid into another) are realised

by one state transducers.

In contrast with Theorem 2.6.1, rational relations are not closed under

intersection, and thus the set of rational relations is not a Boolean algebra.

Moreover, as the Post Correspondence Problem may easily be described as

the intersection of the graph of two morphisms, it is not decidable whether

the intersection of two rational relations is empty, from which one deduces

that equivalence of rational relations is not decidable.

On the positive side, rational relations from a free monoid into another

one are closed under composition, and the image of a rational language by

a rational relation is rational. From the definition itself follows that the

inverse of a rational relation is a rational relation (it suffices to exchange

the first and the second components of the labels).

The model of finite transducers may be transformed, without changing
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the class of realised relations, in order to allow various proofs. In particular,

the initial and final functions (from Q to B) may be generalised to functions

from Q into (ε×B∗) — or, by abuse, from Q into B∗ — together with

the adequate, and obvious, modification of the definition of the label of a

computation.

Figure 2.20 shows three transducers: one for the identity ι, one for ιK
the identity restricted to the rational set K = a∗b∗, that is, the intersection

with K, and one for the relation γ ′ which maps every word w onto the set

of words of the same length as w and greater in the lexicographic order

(assuming that a < b).

a |a

b |b

b |b
a |a b |b

a |b
a |a

b |b

a |a , a |b

b |a , b |b

Fig. 2.20. Three transducers.

As an example of the usefulness of rational relations in the study of ra-

tional languages, let us give a simple and short proof of a classical property

often credited to (Shallit 1994) and that appears several times in this chap-

ter. If L is a language, we denote by minlg (L) (resp. Maxlg (L)) the set of

words of L which have no lesser (resp. greater) word of the same length

in L in the lexicographic, or radix order (they coincide on words of the same

length).

Proposition 2.6.4 If L is a rational language, then so are minlg (L)

and Maxlg (L).

Proof Any word v of L which is greater (in the lexicographic order) than

another word u of L of the same length belongs to ιL(γ′(ιL(u))). Thus

minlg (L) = L \ Im[ιL ◦ γ′ ◦ ιL] , and is rational when L is.

An analogous equality holds for Maxlg (L).

2.6.3 Synchronous transducers and relations

The three transducers of Figure 2.20 have the property that the label of ev-

ery transition is a pair of letters, which immediately implies that they realise

length preserving relations. Being length preserving however is somewhat

too strong a restriction and this constraint is relaxed by allowing the re-

placement, in either component, of a letter by a padding symbol which does

not belong to any alphabet — traditionally denoted by a $ — under the
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‘padding condition’, that is, no letter can appear after the padding symbol

on the same component. Such transducers are called synchronous trans-

ducers. They realise synchronous relations,† obtained by the projection

which erases the padding symbol, and the family of synchronous relations

(from A∗ into B∗) is denoted by SynA∗×B∗.
The introduction of the padding symbol is more than a technical

trick since in particular it is not decidable whether a given ratio-

nal relation is synchronous or not (see (Frougny and Sakarovitch 1993)).

However synchronous relations are a very natural subfamily of ra-

tional relations and they have been given a logical characterisation

in (Eilenberg, Elgot, and Shepherdson 1969). Most of the rational relations

that are considered in this chapter are synchronous. Figure 2.21 shows a

synchronous transducer for the complement of the identity ι, and one for

the relation γ which maps every word w onto the set of words which are

greater than w in the radix order.

a |a

b |b

a |b , b |a

a |a , a |b

b |a , b |b

a |$ , b |$

a |$ , b |$

a |$ , b |$

$ |a , $ |b

$ |a , $ |b

$ |a , $ |b

$ |$

$ |$

$ |$

$ |$

a |a

b |b

a |b

a |a , a |b

b |a , b |b
$ |a , $ |b

$ |a , $ |b

$ |$

$ |$

$ |$

Fig. 2.21. Two synchronous transducers.

Thanks to the following two properties, SynA∗×B∗ provides a family of

rational relations which can be fruitfully used in constructions and proofs.

The first one follows from the fact that the pairs of letters from two al-

phabets can be considered as letters from the product alphabet and thus

synchronous tranducers as finite automata.

Theorem 2.6.5 SynA∗×B∗ is an effective Boolean algebra of rational re-

lations.

Theorem 2.6.6 SynA∗×B∗ is closed under composition.

Let T = (Q,A$, B$, E, I, T ) and U = (R,B$, C$, F, J, U ) be two syn-

chronous transducers which realise the two relations |||T ||| : A∗ → B∗ and

† In (Sakarovitch 2003), synchronous relations are defined as relations realised by letter-
to-letter transducers whose final functions maps states into (Rat A∗×ε)∪(ε×Rat B∗) .
Hopefully, the two definitions are equivalent; the present one is preferred as it makes
Theorem 2.6.5 and Theorem 2.6.6 more evident.
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|||U||| : B∗ → C∗ respectively. Let then T ◦ U be the synchronous transducer

T ◦ U = (Q×R,A$, C$, G, I×J, T×U ) defined by

G = {
(
(p, r), (a, c), (q, s)

)
| ∃b ∈ B$

(
p, (a, b), q

)
∈ E,

(
r, (b, c), s

)
∈ F} ..

Without loss of generality, we can assume that both T and U are completed

by transitions labelled by ($, $) and that go from every final state to a sink

state equipped with a loop labelled in the same way (the grey part in the

transducers of Figure 2.21). Under this assumption, it is a formality to

check that T ◦U realises the relation |||U||| ◦|||T ||| : A∗ → C∗ . This construction

is used at § 2.2.2.2 for the construction of W2
′′.

The fruitfulness of the notion is visible in establishing the following prop-

erty. If A is a totally ordered alphabet, the radix order is a well-ordering

on A∗ and thus on any of its subset L; we denote by SuccL the function

which maps every word of L onto its successor in L in the radix order.

Proposition 2.6.7 If L is a rational language, then SuccL is a syn-

chronous (functional) relation.

Proof As above, we write γ the relation which maps every word w onto the

set of words which are greater than w in the radix order. For any subset K

of A∗, min(K) = K \ γ(K) . For any word u of L, the set of words of L that

are greater than u is ιL(γ(ιL(u))). Hence SuccL(u) = min(ιL(γ(ιL(u)))) =

ιL(γ(ιL(u))) \ γ(ιL(γ(ιL(u)))) and SuccL = ιL ◦ γ ◦ ιL \ γ ◦ ιL ◦ γ ◦ ιL is a

synchronous relation by Theorem 2.6.5 and Theorem 2.6.6.

Remark 2.6.8 If we take a slightly more general definition for the succes-

sor function, namely, a function ω whose restriction on L realises SuccL, we

may find non-rational languages whose successor fonction is realised by a

finite (letter-to-letter right) transducer. In this case, L is strictly contained

in Domω. Such an example is given by the numeration system in rational

base (see Section 2.5).

2.6.4 The left-right duality

Before studying further specialised classes of transducers, let us recall and

precise the conventions and terminology relative to the duality between the

left-to-right and right-to-left reading.

The transpose of a word of A∗, w = a1a2 · · · an , with the ai’s in A, is

the word wt = anan−1 · · · a1 , that is, the sequence of letters obtained by

reading w from right to left. Transposition is additively extended to subsets

of A∗: Lt =
⋃

w∈Lw
t .
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The transpose of an automaton A = (Q,A,E, I, T ) , is the automaton

At = (Q,A,Et, T, I ) where Et = {
(
q, a, p

)
|
(
p, a, q

)
∈ E} . Obviously,

L(At) = [L(A)]t .

A number of properties of automata are directed, that is, corresponds to

properties of the reading of words from left to right; e.g. being deterministic.

IfAt has such a property P,A is said to have the property co-P. For instance,

A is co-deterministic if At is deterministic.

Another way to bring the left-right duality into play is to consider right

automata, that is, automata that read words from right to left (a procedure

that can prove to be natural when reading numbers: from least to most

significant digit). It amounts to the same thing to say that w is accepted

by a right automaton A or that it is accepted by the (left) automaton At.

These notions go over to transducers. The transpose of a transducer T =

(Q,A,B,E, I, T ) , is the transducer T t = (Q,A,B,Et, T, I ) where Et =

{
(
q, (f t, gt), p

)
|
(
p, (f, g), q

)
∈ E} and |||T t||| = |||T |||t . A right transducer

reads the input word, and ‘write’ the output word from right to left. As

above, the relation realised by a right transducer T is the same as the one

realised by the (left) transducer T t.

Being synchronous is a directed notion, because of the ‘padding condition’

or, to state it in another way, because the padding symbols are written at

the right end of words, and we have (implicitly) defined it for (left) trans-

ducer, thus we have defined the left synchronous relations. A relation is

co-synchronous — we also say right synchronous if it is realised by a syn-

chronous right transducer, or by the transpose of a synchronous transducer.

In general, a left synchronous relation is not a right synchronous one. Re-

lations that are both left and right synchronous have been characterised

recently (Carton 2009). We consider below an important particular case of

such relations.

2.6.5 Letter-to-letter transducers and bld-relations

We call letter-to-letter transducer (with a slight abuse of words) a transducer

whose transitions are labelled by pairs of letters and whose initial and final

functions map states into (A∗×ε)∪ (ε×B∗) . In a relation realised by such

a transducer, the lengths of a word and its images are not necessarily equal

but their difference is bounded. More important, the converse of this simple

observation is true.

Let θ : A∗ → B∗ be a relation with the property that there ex-

ists an integer k such that, for every f in A∗ and every g in θ(f),

then
∣∣|f | − |g|

∣∣ 6 k . If k = 0, θ is a length preserving relation; for

an arbitrary k, θ has been called a bounded length difference relation
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((Frougny and Sakarovitch 1993)) or bounded length discrepancy relation

((Sakarovitch 2003)), bld-relation for short in any case.

It is not difficult to verify that a rational relation is bld if, and only

if, any transducer T (without padding symbol!) which realises θ has the

property that the label of every circuit in T is such that the length of

the ‘input’ is equal to the length of the ‘output’, a property which is thus

decidable. The following result is essentially due to Eilenberg who proves

it for length-preserving relations ((Eilenberg 1974)); it has been extended

to bld-relations in (Frougny and Sakarovitch 1993). It relates a property of

the graph of a rational relation (being bld) to the way this relation may be

realised (being synchronous).

Proposition 2.6.9 A bld-rational relation is both left and right syn-

chronous.

The next characterisation of bld relations within synchronous ones goes

back to (Elgot and Mezei 1965).

Proposition 2.6.10 A left (or right) synchronous relation with finite im-

age and finite co-image is a bld-rational relation.

Corollary 2.6.11 If L is a rational language, then SuccL is realised by a

finite letter-to-letter transducer

2.6.6 Sequential transducers and functions

A transducer (from A∗ to B∗) is said to be sequential (resp. co-sequential )

if its underlying input automaton is deterministic (resp. co-deterministic)

and the initial and final functions map its states into ε×B∗. this definition,

a sequential, or co-sequential, transducer realises a functional relation. A

function (from A∗ to B∗) is said to be sequential (resp. co-sequential ) if

it is realised by a sequential (resp. co-sequential) transducer. Of course, a

co-sequential function is realised by a sequential right transducer.

Sequential functions are characterised within rational functions by a topo-

logical criterion in the following way: the prefix distance d of two words u

and v is defined as d (u, v) = |u|+ |v| − 2 |u ∧ v|, where u ∧ v is the longest

common prefix of u and v.

Definition 2.6.12 A function ϕ is said to be k-Lipschitz (for the prefix

distance) if:

∀u, v ∈ Domϕ , d (ϕ(u), ϕ(v)) ≤ kd (u, v) .
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The function ϕ is Lipschitz if there exists a k such that ϕ is k-Lipschitz.

Theorem 2.6.13 (Choffrut 1977) A rational function is sequential if,

and only if, it is Lipschitz.

By the left-right duality, we define the suffix distance ds on A∗: ds (u, v) =

|u|+ |v|−2 |u∧s v|, where u∧s v is the longest common suffix of u and v. A

rational function is co-sequential if, and only if, it is Lipschitz for the suffix

distance. At this point, it cannot be skipped that sequentiality is a decidable

property for functions realised by finite transducers (see (Choffrut 1977))

although this does not play any role in this chapter.

We call piecewise (co-)sequential a function that is a finite union of (co-

)sequential functions (thus with disjont domains). And we have the follow-

ing.

Proposition 2.6.14 (Angrand and Sakarovitch) If L is a rational lan-

guage, then SuccL is a piecewise co-sequential function.

2.7 Notes

As we have already mentioned, we consider only positional numeration sys-

tems. However, we indicate a pioneer work on the relations between nu-

meration and finite automata, which is the paper (Raney 1973), in which

it is proved that the continued fractions expansion of a real number can be

coded by an infinite word on a two-letter alphabet, and that homographic

transformations can be realised by finite transducers.

2.7.1 Representation in integer base

On the links between numeration, logic and finite automata there is a sur-

vey (Bruyère, Hansel, Michaux, et al. 1994).

A generalisation of Cobham’s Theorem to real numbers has

been established in a series of papers (Boigelot and Brusten 2009,

Boigelot, Brusten, and Bruyère 2008). It is proved in particular that, if

a set S of positive real numbers is recognised by a finite weak determinis-

tic automaton in two integer bases that are multiplicatively independent,

then S is definable in 〈R,Z,+, <〉, which means that S is a finite union of

intervals with rational endpoints.
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2.7.2 Representation in real base

Symbolic dynamical systems defined by a particular order on the set of

infinite words on a finite alphabet have been studied from an ergodic point

of view in (Takahashi 1980).

An algebraic integer β > 1 is a Salem number if all its Galois conjugates

have modulus ≤ 1, with at least one conjugate with modulus 1. It has

been proved in (Boyd 1989) that every Salem number of degree 4 is a Parry

number. Boyd also conjectured that it is still true in degree 6, but false

for degree ≥ 8. An algebraic integer β > 1 is a Perron number if all its

Galois conjugates have modulus < β. Perron numbers are introduced in

(Lind 1984). Every Parry number is a Perron number. In (Solomyak 1994)

and in (Flatto, Lagarias, and Poonen 1994) is proved that all the Galois

conjugates of a Parry number have modulus strictly less than the Golden

Ratio. Beta-expansions also appear in the mathematical description of qua-

sicrystals, see (Gazeau, Nešetřil, and B. Rovan, eds 2007).

The study of the β-shift from the point of view of the Chomsky hierarchy

has been done by K. Johnson. A symbolic dynamical system is said to

be context-free if the set of its finite admissible factors is a context-free

language. It is proved in (Johnson 1999) that the β-shift is context-free if,

and only if, it is sofic.

In Section 2.2.2.3 we have presented expansions of minimal weight in

base 2. Recently, the investigation of minimal weight expansions has

been extended to the Fibonacci numeration system in (Heuberger 2004),

and an equivalent to the NAF has been defined. When β is a Pisot

number the set of β-expansions of minimal weight, where the weight is

the absolute sum of the digits, is recognisable by a finite automaton,

(Frougny and Steiner 2008). For the Golden Ratio ϕ the average weight

of ϕ-expansions on the alphabet {−1, 0, 1} of the numbers of absolute value

less than M is 1
5 logϕM , which means that typically only every fifth digit

is non-zero. Note that the corresponding value for 2-expansions of minimal

weight is 1
3 log2M , see (Arno and Wheeler 1993, Bosma 2001), and that

1
5 logϕM ≈ 0.288 log2M .

Fractals and tilings are the subject of Chapter 5 of this book. Let us just

mention some works using finite automata associated with numeration in an

irrational base. The celebrated Rauzy fractal is associated with numeration

in base the Tribonacci number which is the root > 1 of the polynomial X3−
X2−X−1. The boundary of the Rauzy fractal (and of more general fractals

associated with Pisot numbers) has been described by a finite automaton

in (Messaoudi 1998, Messaoudi 2000) and (Durand and Messaoudi 2009).

Finite automata and substitutions are treated in (Pytheas Fogg 2002,
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Chapter 7). (Canterini and Siegel 2001a, Canterini and Siegel 2001b) have

defined the prefix-suffix automaton associated with a substitution of Pisot

type.

Beta-expansions have been extended to finite fields by

(Hbaib and Mkaouar 2006) and (Scheicher 2007). Here β is an ele-

ment of the field of formal Laurent series F((X−1)), with |β| > 1. The

main difference with the classical real base is that all the expansions are

admissible. Moreover the (F) Property is satisfied if and only if β is a

Pisot element of F((X−1)), that is to say, β is an algebraic integer over

F[X ] such that for all Galois conjugate |βi| < 1 (Scheicher 2007).

2.7.3 Canonical numeration systems

In the case where the alphabet associated with a number β is Aβ =

{0, 1, . . . , N(β)−1}, the ‘clearing algorithm’ of (Gilbert 1981) gives an easy

way of computing the expansion of an integer in the system (β,Aβ).

Tilings generated by a canonical numeration system have been investi-

gated by many authors. The first one is probably the twin dragon tiling,

linked to the Penney CNS defined by the base −1 + i, which was ob-

tained by Knuth as the set {z ∈ C | z =
∑

j≥0 dj(−1 + i)−j , dj ∈ {0, 1}},
see (Knuth 1998).

There are interesting contributions on fractals and tilings

in (Gilbert 1991), (Scheicher and Thuswaldner 2002) and

(Akiyama and Thuswaldner 2005).

There have been a number of generalisations of CNS. Let us mention that

the case where β is not an algebraic integer but an algebraic number has

been considered in particular in (Gilbert 1991). It is mentioned that for

any rational p/q > 1, β = −p/q with digit set {0, 1, . . . , p− 1} forms a CNS

in which any number of Z[1/q] has a finite representation.

Scheicher and Thuswaldner investigated number systems in polynomial

rings over finite fields (Scheicher and Thuswaldner 2003).

2.7.4 Representation in rational base

Expansions in rational base are linked to the problem of the distribution of

the fractional part of the powers of rational numbers.

The distribution modulo 1 of the powers of a rational number, indeed

the problem of proving whether they form a dense set or not, is an old

problem. Pisot, Vijayaraghavan and André Weil have shown that there are

infinitely many limit points. With this problem as a background, Mahler

asked in (Mahler 1968) whether there exists a non-zero real z such that the
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fractional part of z (3/2)n for n = 0, 1, . . . fall into [0, 1/2[. It is not known

whether such a real — called a Z-number — does exist but Mahler showed

that the set of Z-numbers is at most countable. His proof is based on the

fact that the fractional part of a Z-number (if it exists) has an expansion

in base 3/2 which is entirely determined by its integral part.

Koksma proved that for almost every real number θ > 1 the sequence

( {θn} )n is uniformly distributed in [0, 1] , but very few results are known

for specific values of θ. One of these is that if θ is a Pisot number, then the

above sequence converges to 0 if we identify [0, 1[ with R/Z.

The next step in attacking this problem has been to fix the rational
p
q

and to study the distribution of the sequence

fn(z) =

{
z

(
p

q

)n}

according to the value of the real number z. Once again, the sequence

fn(z) is uniformly distributed for almost all z > 0 , but nothing is known

for specific values of z.

In the search for z’s for which the sequence fn(z) is not uniformly dis-

tributed, Mahler considered those for which the sequence is eventually con-

tained in
[
0, 1

2

[
. Mahler’s notation is generalized as follow: let I be a (strict)

subset of [0, 1[ and let

Z p
q

(I) = {z ∈ R |
{
z

(
p

q

)n}
stays eventually in I } .

Mahler’s problem is to ask whether Z 3
2

([
0, 1

2

[)
is empty or not.

Mahler’s work has been developed in two directions: the search for sub-

sets I as large as possible such that Z p
q

(I) is empty and conversely the

search for subsets I as small as possible such that Z p
q

(I) is non-empty.

Along the first line, remarkable progress has been made by Flatto et

al. (Flatto, Lagarias, and Pollington 1995) who proved that the set of

reals s such that Z p
q

([
s, s+ 1

p

[)
is empty is dense in [0, 1 − 1

p ], and

Bugeaud (Bugeaud 2004b) proved that its complement is of Lebesgue mea-

sure 0. Along the other line, Pollington (Pollington 1981) showed that

Z 3
2

([
4
65 ,

61
65

[)
is non-empty.

It is proved in (Akiyama, Frougny, and Sakarovitch 2008) that if p >

2q − 1 , there exists a subset Y p
q

of [0, 1[, of Lebesgue measure q
p , such

that Z p
q

(
Y p

q

)
is countably infinite. The elements of Z p

q

(
Y p

q

)
are indeed

the reals which have two p
q -expansions. Coming back to the historical 3/2

case, we have that the set of positive numbers z such that
{
z
(

3
2

)n}
∈

[0, 1/3[ ∪ [2/3, 1[ for n = 0, 1, 2, . . . is countably infinite. It is noteworthy
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that the expansion ‘computed’ by Mahler for his Z-numbers happens to be

exactly one of the 3
2-expansions presented in Section 2.5 — if it exists.
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The primary motivation for the introduction of the abstract numeration

systems stems from the celebrated theorem of Cobham dating back to 1969

about the so-called recognisable sets of integers in any integer base numer-

ation system. Representations of numbers are words over a finite alphabet.

There is a one-to-one correspondence between the sets of numbers and the

languages made of the corresponding representations. Hence it is natural

to consider questions related to formal language theory. In particular, we

study sets of integers corresponding to regular languages. The different sec-

tions of this chapter are largely independent. However, Section 3.2 presents

basic concepts and notation used in all later sections. The main focus is on

the representation of integers. Extension to abstract numeration systems

of the notion of recognisable sets of integers is studied in Section 3.3. In

particular, we present some results about the stability of recognisability

after multiplication by a constant. This requires us to discuss the complex-

ity (or counting) function of regular languages. Section 3.4 is about the

extension — to any substitutive sequence — of Cobham’s theorem from

1972 about the equality of the set of infinite k-automatic words and the

set of images under codings of the fixed points of substitutions of constant

length k. The notion of an S-automatic sequence is then introduced and

various applications to S-recognisability are considered. This chapter ends

with a discussion about the representation of real numbers using abstract

numeration systems.

3.1 Motivations

The primary role of a numeration system is to replace numbers which by

essence are abstract objects by their representations which are words over

suitable alphabets. As an example, the k-ary system replaces integers by

123
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their representations in base k. Denote by Bk the set

{0, . . . , k − 1}∗ \ (0{0, . . . , k − 1}∗)

of words over {0, . . . , k − 1} not starting with 0. The one-to-one corre-

spondence mapping a non-negative integer n onto its k-ary representation

repk(n) ∈ Bk, also denoted 〈n〉k in Chapter 2, can be extended to a one-

to-one correspondence between 2N and 2Bk : any set X ⊆ N is associated

with the language repk(X) made up from the k-ary representations of the

numbers in X . It is therefore natural to study the relationship existing

between the arithmetic properties of integers and the syntactical proper-

ties of the corresponding representations in a given numeration system.

From the point of view of formal language theory, one can focus on those

sets X ⊆ N for which a (deterministic) finite automaton can be used to

decide for any given word w over {0, . . . , k − 1} whether or not w be-

longs to repk(X). Sets having such a property are called k-recognisable

sets. In some sense, a k-recognisable set can be considered as particu-

larly simple because through the k-ary numeration system it has a sim-

ple algorithmic description. Recall that in the Chomsky hierarchy, see for

instance (Sudkamp 2005), (Shallit 2008), deterministic finite automata ac-

cepting regular languages are the simplest model of computation. However,

dealing with k-recognisable sets has a price. As observed by A. Cobham,

see Theorem 1.5.5: k-recognisability depends heavily on the choice of the

base and sets which are k-recognisable for all k ≥ 2 are exactly the even-

tually periodic sets. For that matter, also see Chapter 2 and in particular

Subsection 2.2.4.

First we recall the notion of representation with respect to a U -system.

Also see Section 2.3.3.

Definition 3.1.1 Let us extend the notion of k-ary numeration system by

replacing the sequence (kn)n≥0 with some increasing sequence U = (Un)n≥0

of integers such that U0 = 1. Using successive Euclidean divisions, we

define the U -representation of any positive integer n. Let ` be such that

U` ≤ n < U`+1. We can greedily decompose n in a unique way as

n =
∑̀

k=0

ck Uk with c` 6= 0 and

i∑

k=0

ck Uk < Ui+1, ∀i ∈ {0, . . . , `} . (3.1)

This latter greedy condition implies that, for all i ∈ {0, . . . , `}, we have

ci ∈ {0, . . . , dUi+1/Uie − 1} .

The U -representation of n is c` · · · c0 and is denoted by repU (n). We set
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repU (0) := ε. Since we are interested in language theoretic properties re-

lated to U -representations, we assume moreover that the set {Ui+1/Ui | i ≥
0} is bounded from above to ensure that repU (N) = {repU (n) | n ∈ N} is a

language over a finite alphabet. We set AU to be the minimal (or canoni-

cal) alphabet of this language, i.e., AU = alph(repU (N)). We can similarly

to the integer base systems define the notion of U -recognisable sets. A set

X ⊆ N is said to be U -recognisable, if repU (X) is accepted by a DFA.

These systems can be referred as positional numeration systems and the

corresponding sequence U is usually called the scale or the basis of the sys-

tem. The greediness of the U -representations implies the next proposition.

We recall Definition 1.2.15 for the definition of the genealogical ordering ≺.

Proposition 3.1.2 For all m,n ∈ N, we have

m < n⇔ repU (m) ≺ repU (n)

where the genealogical ordering ≺ is induced by the natural ordering of the

alphabet AU ⊂ N.

Definition 3.1.3 In what follows, in particular for Propositions 3.1.5 and

3.1.9, when speaking of a numeration system U = (Un)n≥0 we assume that

U is increasing, that U0 = 1 and that the set {Ui+1/Ui | i ≥ 0} is bounded.

Amongst the possibly U -recognisable subsets of N, the whole set N is

of special interest. It seems natural to consider numeration systems U =

(Un)n≥0 for which repU (N) is regular, i.e., for which N is U -recognisable.

In that case, we have an algorithm using a constant amount of memory and

working in time proportional to the length of the input — namely a DFA —

to check whether or not any given word over AU is a valid U -representation.

Let us investigate a little bit further what is implied by the U -recognisability

of N. We recall that a multi-graph is a graph which is permitted to have

multiple edges, that is, edges that connect the same pair of vertices. First

we start with the following lemma whose proof can be compared with the

proof of Proposition 2.6.2.

Lemma 3.1.4 Let G = (V,E) be a directed finite multi-graph where V is

the set of vertices of G, E is its multi-set of arcs in V ×V and let q, r ∈ V .

The map Uq,r : N → N counting the number Uq,r(n) of directed paths of

length n from q to r satisfies a linear recurrence relation with (constant)

integer coefficients.

Proof Consider the adjacency matrix M ∈ NV ×V of G: for all vertices
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x, y ∈ V , Mx,y is the number of arcs from x to y, i.e., paths of length 1. A

simple induction shows that, for all x, y ∈ V and all n ∈ N, [Mn]x,y is the

number of paths of length n from x to y. By the Cayley-Hamilton theorem,

if C(X) = det(M−XI) = ckX
k + · · ·+c1X+c0 ∈ Z[X ] is the characteristic

polynomial of M where I is the identity matrix of size k = Card(V ), then

C(M) = 0. Multiplying by Mn, n ≥ 0, gives ckM
n+k + · · · + c1M

n+1 +

c0M
n = 0. To conclude the proof, observe that this latter relation between

matrices holds component-wise.

The next result is a reformulation of Proposition 2.3.47.

Proposition 3.1.5 Let U = (Un)n≥0 be a numeration system as given in

Definition 3.1.3. If N is U -recognisable, then the sequence (Un)n≥0 satisfies

a linear recurrence relation with (constant) integer coefficients.

Proof Note that repU (U`) = 10` for all ` ≥ 0. Amongst the words of

length ` + 1 in repU (N), the smallest one for the genealogical ordering

is 10`. Consequently, for all ` ≥ 0, U`+1 − U` is exactly the number of

words of length ` + 1 in repU (N). Since this latter language is regular, it

is accepted by a DFA and the number of words of length n in repU (N) is

equal to the number of paths of length n from the initial state to the final

ones. Using Lemma 3.1.4 we deduce that the sequence (Card(repU (N) ∩
An

U ))n≥0 satisfies a linear recurrence relation with integer coefficients and

the conclusion follows easily.

As sketched by the next two examples, the converse of Proposition 3.1.5

does not hold in general. Sufficient conditions for N to be U -recognisable

are considered in (Loraud 1995), (Hollander 1998). See Theorem 2.3.57.

Also see Example 3.1.

Example 3.1.6 (Shallit 1994) Such a counterexample is given by the

sequence (Un)n≥0 defined by Un = (n+ 1)2. Then we have U0 = 1, U1 = 4,

U2 = 9 and Un+3 = 3Un+2−3Un+1 +Un. In that case, repU (N)∩10∗10∗ =

{10a10b | b2 < 2a + 4} showing with the pumping lemma that N is not

U -recognisable.

Example 3.1.7 (Frougny 2002) We sketch another counterexample re-

lated to β-expansions, see Example 2.3.62 for details. Let β = (3 +
√

5)/2.

The β-expansion of 1 is 21ω. Consider the sequence (Un)n≥0 satisfying

the recurrence relation Un+3 = 4Un+2 − 4Un+1 + Un, for all n ≥ 0, with

U0 = 1, U1 = 2 and U2 = 6. Proceed by contradiction and assume that N is

U -recognisable. Using the postponed Lemma 3.3.5, the set X = {Un − 1 |
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n ≥ 0} is U -recognisable because repU (X) = Maxlg (repU (N)). Due to the

β-expansion of 1, one can show that all but a finite number of words in

repU (X) are of the kind 21in2wn where in →∞ and |wn| → ∞ as n→∞.

Therefore the pumping lemma shows that repU (X) is not regular.

It is probably worth to recall here a standard result about the gen-

eral form of linear recurrence sequences, see any standard textbook like

(Graham, Knuth, and Patashnik 1989). We assume that all the coefficients

and the initial conditions belong to some field extension K of characteris-

tic zero where the characteristic polynomial of the recurrence factorises as

linear factors.

Theorem 3.1.8 Let k ≥ 1 and r0, . . . , rk−1 ∈ K. Let (Un)n≥0 be a se-

quence satisfying, for all n ≥ 0,

Un+k = rk−1Un+k−1 + · · ·+ r0Un .

If α1, . . . , αt are the roots of the characteristic polynomial Xk−rk−1X
k−1−

· · · − r0 of the recurrence with respective multiplicities m1, . . . ,mt, then

there exist polynomials P1, . . . , Pt ∈ K[X ] of degree respectively less than

m1, . . . ,mt and depending only on the initial conditions U0, . . . , Uk−1 ∈ K
such that

∀n ≥ 0, Un = P1(n)αn
1 + · · ·+ Pt(n)αn

t .

Let B ⊂ Z be an alphabet. The function valB,U : B∗ → Z maps any word

w = c` · · · c0 ∈ B∗ onto valB,U (w) =
∑`

k=0 ck Uk. It is clear that, for all

n ∈ N, valB,U (repU (n)) = n. On the other hand, for all w ∈ B∗, such that

valB,U (w) ≥ 0, the so-called normalisation maps w onto repU (valB,U (w))

which is not necessarily equal to w. Indeed, to apply valB,U , it is not

required that w is a greedy U -representation. For example, considering the

Fibonacci numeration system F = (1, 2, 3, 5, . . .), repF (val{0,1},F (11)) =

100. Note that in general, if the alphabet B contains negative elements,

then the normalisation is a partial function whose domain is a strict subset

of B∗.
We already know that eventually periodic sets are k-recognisable for all

k ≥ 2. What can be said in a wider framework?

Proposition 3.1.9 Let p, r ≥ 0. If (Un)n≥0 is a numeration system given

as in Definition 3.1.3 and satisfying a linear recurrence relation with integer

coefficients, then

val−1
AU ,U (pN + r) =

{
c` · · · c0 ∈ A∗

U |
∑̀

k=0

ck Uk ∈ pN + r

}
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is accepted by a DFA that can be effectively constructed. In particular, if N
is U -recognisable, then any eventually periodic set is U -recognisable.

Prior to the proof, notice that for any integer n ≥ 0, val−1
AU ,U (n) \ 0A∗

U

is a finite set of words {x1, . . . , xtn
} over AU such that valAU ,U (xi) = n for

all i = 1, . . . , tn. This non-empty set contains in particular repU (n).

Proof Since regular sets are stable under finite modifications, i.e., adding

and/or removing a finite number of words to a regular language gives a

regular language, we can assume that p > r ≥ 0. The sequence (Un mod

p)n≥0 is eventually periodic say, with preperiod m and period q, that is, for

all i ≥ m, Ui ≡ Ui+q (mod p). We build a deterministic finite automaton

A accepting reversal of the words in {w ∈ A∗
U | valU (w) ∈ pN + r}. The

alphabet of the automaton is AU . States are ordered pairs (t, s) where

0 ≤ t < p and 0 ≤ s < m + q. The first component of a state handles the

value modulo p of the digits that have been read and the second component

takes care of the periodicity of (Un mod p)n≥0. The initial states is (0, 0).

Final states are the ones with the first component equal to r. Transitions

are defined as follows

∀s < m+ q − 1 : (t, s)
j−→ (jUs + t mod p, s+ 1)

and

(t,m+ q − 1)
j−→ (jUm+q−1 + t mod p, m)

for all j ∈ AU . Note that A does not check the greediness of the accepted

words, the construction only relies on the U -numerical value of the words

modulo p. For the particular case, one has to consider the intersection of

two regular languages repU (N) ∩ val−1
U (pN + r).

Taking into account this latter result, Cobham’s theorem and also the

above discussion about deciding whether a word is a valid U -representation

or not, the recognisability of N is desirable and can be considered as a nat-

ural expectation for any numeration system. In particular in view of the

above proposition, N is U -recognisable if, and only if, all eventually peri-

odic sets are U -recognisable. If this becomes our basic requirement, we can

consider the problem the other way round. Instead of taking a sequence U

of integers and looking for conditions that guarantee the U -recognisability

of N, we take an arbitrary infinite regular language L over an alphabet A

to build a numeration system, this language L being viewed as the set of

valid representations of all the integers. Indeed a numeration system U is

characterised by the language of all the representations and its monotonic-

ity. In view of Proposition 3.1.2 about order-preserving representations,
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if the alphabet A is totally ordered, say (A,<), we order the words of

L by the increasing genealogical order induced by the ordering of A, say

w0 ≺ w1 ≺ w2 ≺ · · · . This ordering of L gives a one-to-one correspondence

between N and L: with n ∈ N is associated wn ∈ L. Such a bijection is

the essence of a numeration system: associating a representation with any

integer. We have therefore the following formal definition.

Definition 3.1.10 An abstract numeration system (or ANS for short) is

a triple S = (L,A,<) where L is an infinite regular language over a to-

tally ordered alphabet (A,<). The map repS : N → L is the one-to-one

correspondence mapping n ∈ N onto the (n + 1)th word in the genealog-

ically ordered language L, which is called the S-representation of n. The

S-representation of 0 is the first word in L. The inverse map is denoted by

valS : L→ N. If w is a word in L, valS(w) is its S-numerical value.

Note that one could relax the assumption about the regularity of L in

the definition of an ANS S = (L,A,<). In that case, we still have to

consider words of L in ascending genealogical order. This would give a

wider framework to work with, but then we loose the recognisability of N.

Now let us present four examples. Some of them can be related to a

suitably chosen sequence (Un)n≥0, others can not, showing that the class of

ANS is strictly larger than the usual class of numeration systems given by

Definition 3.1.1 and for which N is U -recognisable.

Example 3.1.11 Let U be a numeration system in the sense of Defini-

tion 3.1.1 such that N is U -recognisable. In view of Proposition 3.1.2, this

numeration system can be considered as an ANS by enumerating the words

of repU (N) by the genealogical order induced by the natural ordering of

the digits. As an example, taking the language 1{0, 01}∗ ∪ {ε} with the

natural ordering 0 < 1 gives back the Fibonacci system and the language

Bk = {0, . . . , k − 1}∗ \ 0{0, . . . , k − 1}∗ gives the k-ary system.

Example 3.1.12 Consider L = a∗b∗ with a < b and the ANS S =

(L, {a, b}, <). The first few words in L in ascending genealogical order

are

ε ≺ a ≺ b ≺ aa ≺ ab ≺ bb ≺ aaa ≺ aab ≺ abb ≺ bbb ≺ · · · .

For example, valS(abb) = 8 and repS(3) = aa. If we consider the bijection

from L to N2 mapping the word aibj onto the pair (i, j), i, j ≥ 0, it is

not difficult to see that the genealogical ordering of L corresponds to the
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primitive recursive Peano enumeration of N2, that is

valS(aibj) =
1

2
(i+ j)(i+ j + 1) + j. (3.2)

Let us pursue this example a little bit further. Assume that we have a map

v : {a, b} → N which assigns some weight to a and b. We show that there

exists no sequence U = (Un)n≥0 defining a numeration system in the sense

of Definition 3.1.1 such that, for all words w` · · ·w0 ∈ L,

valS(w` · · ·w0) =
∑̀

k=0

v(wk)Uk .

We proceed by contradiction and we assume that such a sequence exists.

Since U0 = 1 and valS(a) = 1, valS(b) = 2, we must have v(a) = 1 and

v(b) = 2. Notice that valS(aa) = 3 and this quantity should be equal to

v(a)U1 + v(a)U0. Consequently, U1 = 2. Therefore v(b)U1 + v(b)U0 = 6 but

valS(bb) = 5, which gives a contradiction.

This example shows that the family of ANS contains more numeration

systems that those of Definition 3.1.1 for which N is U -recognisable. To

contrast with ANS which only depend on the genealogical ordering, recall

that the systems associated with Definition 3.1.1 are referred as positional

numeration systems. As we shall soon see in Lemma 3.2.2, the general

expression of valS(w) for an ANS S = (L,A,<) and a word w ∈ L involves

usually more than a single linear recurrence sequence.

Example 3.1.13 (Allowing leading zeroes) The reader may have no-

ticed that we have defined greedy U -representations as words not starting

with zero. It not only makes the definition unambiguous but this choice

was made on purpose because in the context of abstract numeration sys-

tems, adding leading zeroes to a word changes its length and therefore

its position in the genealogically ordered language. As an example, con-

sider the language {0, 1}∗. The first few words in this language are ε, 0,

1, 00, 01, 10, 11, 000. So for the ANS S = ({0, 1}∗, {0, 1}, 0 < 1), we

get valS(0) = 1, valS(00) = 3 and so on. Actually, if one considers the

map v defined as v(0) = 1 and v(1) = 2, it is not difficult to see that

valS(w` · · ·w0) =
∑`

k=0 v(wk) 2k which corresponds to the so-called 2-adic

numeration system: any non-negative integer is uniquely represented as a

word over {1, 2} with the sequence (2n)n≥0 being the underlying scale.

Example 3.1.14 (Pisot numeration system) Recall from Chapter 2

that a Pisot number is an algebraic integer α > 1 whose conjugates have

modulus less than 1. Consider a linear recurrence sequence (Un)n≥0 whose
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characteristic polynomial is the minimal polynomial of a Pisot number α

of degree k. If the integer initial conditions are 1 = U0 < U1 < · · · <
Uk−1, then there exists some c > 0 such that Un ∼ c αn and moreover

|Un− c αn| → 0, as n tends to infinity, because we can apply Theorem 3.1.8

about the general solution of a linear recurrence† and for any other root

β 6= α of the characteristic polynomial of the recurrence, since |β| < 1,

we have βn → 0 as n → ∞. This sequence can be used to define a nu-

meration system in the sense of Definition 3.1.1. It is well-known that for

such a system, N is U -recognisable. Moreover, all the nice properties of the

integer base numeration systems still hold: logical or substitutive charac-

terisations of the U -recognisable sets, stability of U -recognisability under

addition and multiplication by a constant, normalisation is computable by

finite automata,. . . see (Bruyère and Hansel 1997), (Frougny 1992). Since

N is U -recognisable, these “state-of-the-art” positional numeration systems

are all special cases of ANS.

Example 3.1.15 (Prefix-closed language) In the case of an ANS based

on a prefix-closed language, we propose a useful picture of the map valS .

This is simply another expression of the genealogical ordering of L. As an

example consider the language L = {a, ba}∗{ε, b} and a < b. In Figure 3.1

we represent the first three levels of the corresponding trie, i.e., a rooted tree

where the edges are labelled by letters from A, and the nodes are labelled

by prefixes of words in the considered language L. Let u ∈ A∗, a ∈ A. If ua

is (a prefix of) a word in L, then there is an edge between u and ua. Note

that for a prefix-closed language L, all prefixes of words in L belong to L.

In the nodes, we have written the S-numerical value of the corresponding

words in L. The root is associated with ε. When considering a prefix-closed

0

1 2

3 4 5

6 7 8 9 10

a b

a b a

a b a a b

Fig. 3.1. A trie for words of length ≤ 3 in L.

† Remember that all the roots of the minimal polynomial of an algebraic number are
simple.
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language ordered by genealogical order, the nth level of the trie contains

all words of L of length n in lexicographic order from left to right assuming

that the sons of a node are also ordered with respect to the ordering of the

alphabet.

Definition 3.1.16 For a given ANS S = (L,A,<), any integer n is mapped

onto a word repS(n) and any subset X of N is mapped onto a language

repS(X) ⊆ L. We have therefore a one-to-one correspondence between 2N

and 2L. In this general framework of abstract numeration systems, we are

interested in sets X of integers such that repS(X) is regular. These sets are

called S-recognisable sets.

Example 3.1.17 Considering the ANS S = (a∗b∗, {a, b}, a < b) from Ex-

ample 3.1.12, the set X of triangular numbers

X = {0, 1, 3, 6, 10, . . .} = {n(n+ 1)/2 | n ≥ 0}

is S-recognisable. Indeed, it is easy to check that repS(X) = a∗ because

the number of words of length n ≥ 0 in a∗b∗ is exactly n+1. If we consider

the ANS R = (a∗b∗, {a, b}, b < a) where the ordering of the alphabet has

been reversed, then repR(X) = b∗.

3.2 Computing numerical values and S-representations

Let S = (L,A,<) be an abstract numeration system. Since L is a regular

language, we can consider a complete DFA A = (Q,A,E, {q0}, T ) having

δA : Q × A∗ → Q as (extended) transition function. We write q.w as a

shorthand for δA(q, w) if the context is clear, q ∈ Q, w ∈ A∗. First we

show, as a consequence of the genealogical ordering of L, that the function

valS can be computed recursively and we obtain a decomposition of any

integer using functions U and V counting the number of words accepted

from the different states of A and defined below.

For all q ∈ Q, Lq = {w ∈ A∗ | q.w ∈ F} is the regular language of words

accepted in A starting from state q. We set

Uq(n) := Card(Lq ∩ An) and Vq(n) :=

n∑

k=0

Uq(k) (3.3)

being respectively the number of words of length n and, at most n, accepted

from q. From Lemma 3.1.4, all the sequences (Uq(n))n≥0, q ∈ Q, satisfy the

same linear recurrence relation. Indeed, Uq(n) is the sum over all the final

states f ∈ T of the number of paths of length n from q to f . Moreover,

(Vq(n))n≥0 satisfies a linear recurrence relation that can be derived from
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the one satisfied by (Uq(n))n≥0, simply by observing that, for all n ≥ 0, we

have Vq(n+ 1)− Vq(n) = Uq(n+ 1). Also we write

U(n) := Uq0(n) = Card(L ∩ An) and V(n) := Vq0(n) = Card(L ∩A≤n) .

Note that these two maps U(n) and V(n) are independent of the choice of

the DFA accepting L. They only depend on the language L, so if emphasis

on L is needed, we also use notation like UL(n) and VL(n). The map U :

N → N is often called the counting function or (combinatorial) complexity

function of L (compare with Definition 1.2.12).

Since, for all q ∈ Q, the language Lq is regular, we can consider the ANS

Sq = (Lq, A,<). The corresponding maps valSq
and repSq

are respectively

denoted by valq and repq . For some q ∈ Q, Lq can possibly be finite. If this

is the case, we extend the definition of an ANS to allow this situation but

the domain of repq is therefore {0, . . . ,CardLq − 1}.

Example 3.2.1 Consider the regular language L accepted by the DFA

depicted in Figure 3.2 having states q0, q1 and q2. With notation introduced

q0 q1 q2
a a

a

bb

b

Fig. 3.2. A DFA accepting the language L ⊂ {a, b}∗.

above, the first few words in L = Lq0 , Lq1 and Lq2 are respectively

Lq0 = {b, aa, abb, bab, bba, aaab, aaba, abaa, baaa, bbbb, aaaaa, . . .}
Lq1 = {a, bb, aab, aba, baa, aaaa, abbb, babb, bbab, bbba, aaabb, . . .}
Lq2 = {ε, ab, ba, aaa, bbb, aabb, abab, abba, baab, baba, bbaa, aaaab, . . .}

and the adjacency matrix of the automaton is

M =




0 1 1

1 0 1

1 1 0


 .

Therefore, using the same technique as in the proof of Lemma 3.1.4 (simply

compute the characteristic polynomial of M), we get that the sequences

(Uqi
(n))n≥0 satisfy Uqi

(n + 3) = 3Uqi
(n + 1) + 2Uqi

(n) for all n ≥ 0. We

have computed the first few values of these sequences:

0 1 2 3 4 5 6 7 8 9 10

Uq0(n) = Uq1(n) 0 1 1 3 5 11 21 43 85 171 341

Uq2(n) 1 0 2 2 6 10 22 42 86 170 342

.



134 P. Lecomte, M. Rigo

For instance, repS(0) = repq0
(0) = b, repq1

(0) = a and repq2
(0) = ε. In the

same way, valS(abb) = valq0(abb) = 2, valq1(aab) = 2 = valq2(ba).

Now that we have a good knowledge of the different maps valq, Uq and

Vq, we present a lemma used to compute recursively the S-numerical value

of any word in L.

Lemma 3.2.2 Let S = (L,A,<) be an ANS where L is accepted by a DFA

A = (Q,A,E, {q0}, T ). Let q ∈ Q. If the word xy belongs to Lq where the

factor y is non-empty, then

valq(xy) = valq.x(y) + Vq(|xy| − 1)− Vq.x(|y| − 1) +
∑

w<x
|w|=|x|

Uq.w(|y|) .

Proof We have to compute the number of words belonging to Lq and

genealogically less than xy. There are three kinds of such words. The first

ones are the words of length less than |xy|. We have Vq(|xy| − 1) such

words. Then we have to take into account words in Lq of length |xy| having

a prefix w such that |w| = |x| and w < x. It is clear that there are

Card{wz ∈ Lq | w < x, |w| = |x|, |z| = |y|} =
∑

w<x
|w|=|x|

Uq.w(|y|)

words of this kind. Finally, we have words in Lq of length |xy| having x as

prefix and lexicographically less than xy. We have to count the number of

words in Lq.x of length |y| lexicographically less than y. We get valq.x(y)−
Vq.x(|y| − 1) such words because valq.x(y) is the total number of words less

than y in Lq.x and we have to subtract words of length less than |y|.

For ANS we have a “multi-scale” analogue to the decomposition (3.1)

occurring in positional numeration systems. Let S = (L,A,<) be an ANS

where L is accepted by a DFA A. Instead of having a unique sequence

(Un)n≥0 to express the numerical value of a word c` · · · c0 as
∑`

k=0 ck Uk, we

are considering the several sequences (Uq(n))n≥0, in fact, as many sequences

as states in A.

Theorem 3.2.3 Let S = (L,A,<) be an ANS where L is accepted by the

DFA A = (Q,A,E, {q0}, T ). Let w = w1 · · ·wn ∈ L. Then we have

valS(w) =
∑

q∈Q

|w|∑

i=1

bq,i(w) Uq(|w| − i) (3.4)
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where for i = 1, . . . , |w|,

bq,i(w) = Card{a ∈ A | a < wi, q0.w1 · · ·wi−1a = q}+ Iq,q0 (3.5)

where I is the identity matrix in {0, 1}Q×Q, so Iq,q0 = 1 if, and only if,

q = q0. Moreover, these coefficients are bounded:

0 ≤
∑

q∈Q

bq,i(w) ≤ CardA .

Proof Formula (3.4) can be proved using Lemma 3.2.2 inductively. Also it

can be proved by observing that the summand for (q, i) ∈ Q× {1, . . . , |w|}
with q 6= q0 is the number of words v = v1 · · · vn of length |w| which have

prefix w1 · · ·wi−1a with a < wi, which means that v ≺ w, the state q

is reached after reading the first i letters of v, and the suffix vi+1 · · · vn

is accepted from state q. For q = q0 the summand for (q0, i) equals the

number with the same descriptions as above plus the number of words

of length |w| − i which are accepted by the automaton starting from q0.

Summing over all possible pairs (q, i) first gives the number of words v ≺ w
with |v| = |w|, the extra summand for q = q0 equals the number of words

v in L with |v| < |w|. Altogether this equals valS(w).

The following proposition asserts that the coefficients of the decomposi-

tion (3.4) can be obtained almost automatically. This is merely the trans-

lation of (3.5) but this fact will play an important role when dealing with

the representation of real numbers in Section 3.5.

Proposition 3.2.4 Let S = (L,A,<) be an ANS where L is accepted by

a DFA A = (Q,A,E, {q0}, T ). For any q ∈ Q, one can efficiently build a

sequential letter-to-letter transducer Tq computing, for all i, the coefficients

bq,i(w) occurring in (3.4), i.e., to any input w1 · · ·wn ∈ L is associated the

output bq,1(w) · · · bq,n(w) of Tq.

Proof It is a direct consequence of (3.5). Let q ∈ Q. We build a

transducer Tq having the same set of states and the same initial state

and final states as A. The input and output alphabets of Tq are respec-

tively A and {0, . . . ,CardA}. For any transition (r, c, s) ∈ E appearing

in A, we take for the transducer Tq the transition (r, (c, xr,c), s) where

xr,c = Card{a ∈ A | a < c, r.a = q}+ Iq0,q.

Example 3.2.5 Consider the ANS from Example 3.2.1. The correspond-

ing three transducers are given in Figure 3.3 (one for each state of the DFA).

Notice that the output associated with a is always 0 except for q0 where it
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q0 q1 q2

a |1 a |1

a |1

b |2b |1

b |1

q0 q1 q2

a |0 a |0

a |0

b |0b |0

b |1

q0 q1 q2

a |0 a |0

a |0

b |0b |1

b |0

Fig. 3.3. The three transducers Tq0 , Tq1 and Tq2 .

is 1. Consider for instance the word abaa which is such that valS(abaa) = 7.

Feeding the transducers with this word gives respectively the words 1111,

0000 and 0100. Therefore, we find the expected decomposition of 7:

1Uq0(3) +1Uq0(2) +1Uq0(1) +1Uq0(0)

+ 0Uq1(3) +0Uq1(2) +0Uq1(1) +0Uq1(0)

+ 0Uq2(3) +1Uq2(2) +0Uq2(1) +0Uq2(0) = 3 + 1 + 1 + 0 + 2.

Now let us turn our attention to the computation of repS(n) where S =

(L,A,<) and A = {a1 < · · · < at}. We assume that we have at our disposal

a DFA M having q0 as initial state and accepting L. In particular, Uq(n)

and Vq(n) can be obtained using the linear recurrence relations derived from

M and its adjacency matrix. As usual, we simply write q.w for the action

of w in A∗ on q in the set of states ofM.

Observe that | repS(n)| = ` > 0 if, and only if, V(` − 1) ≤ n < V(`).

Indeed, if L contains some words of length `, then the first word of length `

has position V(`−1) in the genealogically ordered language L and U(`) > 0.

So, for all n ≥ 0, we get

| repS(n)| = inf{m ∈ N | n < V(m)} .

Let n ≥ 0 and ` = | repS(n)|. To determine the first letter of the S-

representation of n, we compute, for all s ∈ {1, . . . , t}, the number N [`, as]

of words of length ` belonging to L and beginning with a1, a2, . . . or as. It is

given byN [`, as] :=
∑s

i=1 Uq0.ai
(`−1). For convenience, we setN [`, a0] = 0.

There exists a unique r such that N [`, ar−1] ≤ n−V(`− 1) < N [`, ar] and

the first letter of the S-representation of n is therefore ar. We proceed in the

same way to determine the other letters of the S-representation. Table 3.1

sketches the structure of the genealogically ordered language L for words of

length ` with their corresponding position in L. The pseudocode algorithm

presented in Table 3.2 computes the S-representation w of n. In the last

line of this algorithm, waj represents the concatenation of the word w and

the letter aj .
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V`−1 a1 a1 · · ·
...

...
V`−1 + Uq0.a1a1(`− 2) a2 · · ·

...
...
a1 ap · · ·

V`−1 + Uq0.a1(`− 1) a2 a1 · · ·
...

...
V`−1 + Uq0.a1(`− 1) + Uq0.a2a1(`− 2) a2 · · ·

...
...
a2 ap · · ·
...

V`−1 +
Pp−1

i=1 Uq0.ai(`− 1) ap a1 · · ·
...

...
V`−1 +

Pp−1
i=1 Uq0.ai(`− 1) + Uq0.apa1(`− 2) a2 · · ·

...
...

V` − 1 ap ap · · ·

Table 3.1. Words in L of length ` in increasing genealogical order and

their corresponding S-numerical values.

3.3 S-recognisable sets

The aim of this section is to present some properties of S-recognisable sets

of integers. We know that eventually periodic sets are k-recognisable, for all

k ≥ 2, and by Proposition 3.1.9 also U -recognisable for numeration systems

such that N is U -recognisable. Interestingly this property† still holds for

ANS which is somehow encouraging if one thinks about a possible analogue

of the Cobham theorem.

Theorem 3.3.1 Let S = (L,A,<) be an ANS. Any eventually periodic set

is S-recognisable.

Due to the importance of this result, we provide two different proofs.

The first one is direct: we show that the minimal automaton of the set

† It was the very first result we were looking for. Getting it was a true motivation for
the study of ANS.
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Find the unique ` be such that V(`− 1) ≤ n < V(`)
q ← q0
m← n− V(`− 1)
w← ε
FOR i = 1 TO ` DO

s← 1
WHILE m ≥ Uq.as(`− i) DO
m← m−Uq.as(`− i)
s← s+ 1

END-WHILE
q ← q.as

w← was

END-FOR

Table 3.2. An algorithm for computing repS(n).

of representations of any eventually periodic set is finite. It presents some

sharp argument but it does not provide any “constructive feeling” about

the machinery behind as does the second proof.

Prior to these proofs we can make the following observation. It is well-

known that taking in a regular language the smallest (respectively largest)

word of every length for the genealogical ordering gives again a regular

language, see Proposition 2.6.4 and Lemma 3.3.5. We can reformulate The-

orem 3.3.1 to obtain some decimation operation preserving the regularity

of languages.

Theorem 3.3.2 Let (A,<) be a totally ordered alphabet. If we order the

words of a regular language L ⊆ A∗ in the genealogical order induced by <,

say w0 ≺ w1 ≺ w2 ≺ · · · , then for all p > r ≥ 0 the language {wnp+r ∈ L |
n ≥ 0} is regular.

Let us present a first proof of Theorem 3.3.1 or equivalently of the above

theorem.

Proof It is well-known that a language M ⊆ A∗ is regular if, and only if,

its minimal automaton AM is finite. The set of states of AM is {w−1M |
w ∈ A∗} where w−1M = {u | wu ∈M}. See any standard textbook about

automata theory like (Eilenberg 1974) or (Sakarovitch 2003).

Since a finite union of regular languages is regular and since adding or

removing a finite number of words in a regular language does not change

its regularity, it is enough to show that the minimal automaton AP of the

language P = repS(pN + r) ⊆ A∗ is finite, with p > r ≥ 0. The states of

AP are the sets

w−1P = {x ∈ A∗ | valS(wx) ≡ r (mod p)}, w ∈ A∗ .
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Consider the regular language L on which the ANS S is built and its

corresponding minimal automaton AL. In fact we could consider any DFA

accepting L, the arguments remain unchanged. The reader should be care-

ful, we are considering two different minimal automata: AL which we know

is finite and AP which we would like to prove to be finite. We know that,

for all states q of AL, the sequences (Uq(n))n≥0 and (Vq(n))n≥0 introduced

in (3.3) satisfy a linear recurrence equation and are therefore eventually pe-

riodic mod p. Let q0 be the initial state of AL. Assume that the period of

the sequence (Vq0(n) mod p)n≥0 is t and its preperiod is s. By Lemma 3.2.2,

we have

valS(wx) = valq0.w(x) + Vq0(|wx| − 1)− Vq0.w(|x| − 1) +
∑

v<w
|v|=|w|

Uq0.v(|x|).

Since AL is finite, q0.w can only take a finite number of values in Q, the set

of states ofAL. Working modulo p, for |w| > s, the term Vq0(|wx|−1) can be

written as Vq0(|x|+ i) for some i ∈ {0, . . . , t−1} because (Vq0(n) mod p)n≥0

is eventually periodic. Modulo p, for all w ∈ A∗, there exist coefficients

jq ∈ {0, . . . , p− 1} such that

∑

v<w
|w|=|v|

Uq0.v(|x|) ≡
∑

q∈Q

jq Uq(|x|) (mod p) .

Note that the number of maps n 7→ ∑
q∈Q jq Uq(n) is finite and bounded

by pCard Q. Consequently, for any w ∈ A∗ such that |w| > s, the set w−1P

is of the form

{
x | valk(x) + Vq0(|x|+ i)− Vk(|x| − 1) +

∑

q∈Q

jq Uq(|x|) ≡ r (mod p)
}

for some k ∈ Q, jq ∈ {0, . . . , p − 1} and i ∈ {0, . . . , t − 1}. So, there are

finitely many sets of this kind and the set {w−1P | w ∈ A∗} of states of the

minimal automaton of P is finite.

Now let us consider an alternative proof followed by an example.

Idea of the proof. We notice that all the sequences occurring in

Lemma 3.2.2 are eventually periodic modulo p with some common period

M and they are all periodic after at most K terms. We build an NFA which

reads entries from the left, say leading letter first, and which computes the

numerical value of entries modulo p. In order to apply Lemma 3.2.2, we

have to keep track of the state the DFA accepting L is in when reading such

an entry. Also we have to deal with the common period M : when we enter

a new word w, the value of |w| mod M is guessed non-deterministically.
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Only a correct guess can lead to the unique final state. The last K let-

ters are treated separately because we cannot rely anymore on the periodic

structure.

Proof Let A = (Q,A,E, {q0}, T ) be a DFA accepting the language L with

δA : Q×A→ Q as the transition function. We give a method to construct an

NFA accepting repS(pN + r). The key argument is again that, for all q ∈
Q, the sequences (Uq(n) mod p)n≥0 and (Vq(n) mod p)n≥0 are eventually

periodic. Therefore, for each q ∈ Q, there exist gq, hq, sq and tq belonging

to N such that hq, tq ≥ 1,

∀n ≥ gq, Un(q) ≡ Un+hq
(q) (mod p)

and

∀n ≥ sq , Vn(q) ≡ Vn+tq
(q) (mod p) .

Set M to be the least common multiple of the constants hq and tq and

K = max

{
sup
q∈Q

gq, sup
q∈Q

sq + 1

}
.

Taking sq +1 instead of sq is due to the term Vq.a(|y|−1) in the expression

of valq(ay) given by Lemma 3.2.2: for all a ∈ A and all y ∈ A+ such that

ay ∈ Lq, we have

valq(ay) = valq.a(y) +

=:R(q,a,|y|)︷ ︸︸ ︷
Vq(|y|)− Vq.a(|y| − 1) +

∑

b<a
b∈A

Uq.b(|y|) . (3.6)

This shows that for |y| ≥ K, valq(ay) is congruent to valq.a(y) modulo p

but a quantity R(q, a, |y|) mod p depending only on q, a and |y| mod M has

to be added. Hence, for n ≥ 1 and letters a1, . . . , aK+n ∈ A, we obtain

inductively that valq(a1 · · ·anan+1 · · · an+K) is equal to

R(q, a1,K + n− 1) +R(q.a1, a2,K + n− 2) + · · ·
+ R(q.a1 · · · an−1, an,K) + valq.a1···an

(an+1 · · · an+K) .

We will mimic this latter decomposition using the following NFA. Con-

sider the NFA B = (Q′ ∪ {f}, A,E′, I, F ) where Q′ = Q× {0, . . . , p− 1} ×
{0, . . . ,M − 1}, I = {(q0, 0, j) | j = 0, . . . ,M − 1} and F = {f} where f 6∈
Q′. Let us show that this NFA accepts the language repS(pN + r) ∩ A≥K .

The language repS(pN + r) ∩ A<K is finite and can be handled sepa-

rately. The first component of any state of B is used to store and mimic
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the behaviour of A. The estimated numerical value modulo p result-

ing from the letters that have already been read, is stored in the sec-

ond component (starting from zero, first we add R(q, a1,K + n − 1), then

R(q.a1, a2,K+n−2), etc.). The length modulo M of the remaining part of

the word to be read is stored in the last component of the state, this length

is unknown at the beginning and will non-deterministically be guessed by

B. Now we will explain the details. The transition relation of B is such that

((q, i, j), a, (δA(q, a), k, j − 1)) ∈ E′, if j ∈ {1, . . . ,M − 1};
((q, i, j), a, (δA(q, a), k,M − 1)) ∈ E′, if j = 0

(3.7)

where the unique k, depending on q, a, i and j, is easily computed using

(3.6). Actually k = i+R(q, a, j) mod p. If x ∈ Lq∩AK and i ∈ {0, . . . , p−1}
are such that valq(x) + i ≡ r (mod p) then we also add

((q, i,K mod M), x, f) ∈ E′

and note that these are the only relations leading to the final state. The

reading of a word w of length at least K could a priori be started from any

of the M initial states of B. But note that only one of these states has to

be chosen with respect to |w| to reach the unique final state f at the end

of the reading of w.

Example 3.3.3 We apply the above construction to obtain an NFA recog-

nising repS(3 N + 1) where S is the ANS based on the language L of the

words over {a, b} having an even number of b. We assume that a < b. The

minimal automaton of L is depicted in Figure 3.4. We have

q0 q1

a a

b

b

Fig. 3.4. DFA accepting words with an even number of b.

{ Uq0(n) = 2n−1, ∀n ≥ 1

Uq0(0) = 1
and

{ Uq1(n) = 2n−1, ∀n ≥ 1

Uq1(0) = 0 .

For all n ≥ 1, Uq0(n) = Uq1(n) ≡ (−1)n−1 (mod 3) and, for all n ∈ N,

Vq0(n) ≡ (−1)n (mod 3) and Vq1(n) ≡ (−1)n − 1 (mod 3). Using the

notation given in the previous proof, we set K = 1 and M = 2. From (3.6),
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we get the following relations modulo 3. If |w| ≥ 1,

valq0(aw) ≡ valq0(w) + (−1)|w|+1 (mod 3)

valq0(bw) ≡ valq1(w) + (−1)|w| + 1 (mod 3)

valq1(aw) ≡ valq1(w) + (−1)|w|+1 (mod 3)

valq1(bw) ≡ valq0(w) + (−1)|w| − 1 (mod 3)

where we can notice that the last term depends only on |w| (mod 2). Taking

these relations into account, we define as in (3.7) the main part of the

transition relation:

(q0, 0, 0) (q0, 1, 0) (q0, 2, 0) (q0, 0, 1) (q0, 1, 1) (q0, 2, 1)

a (q0, 2, 1) (q0, 0, 1) (q0, 1, 1) (q0, 1, 0) (q0, 2, 0) (q0, 0, 0)

b (q1, 2, 1) (q1, 0, 1) (q1, 1, 1) (q1, 0, 0) (q1, 1, 0) (q1, 2, 0)

(q1, 0, 0) (q1, 1, 0) (q1, 2, 0) (q1, 0, 1) (q1, 1, 1) (q1, 2, 1)

a (q1, 2, 1) (q1, 0, 1) (q1, 1, 1) (q1, 1, 0) (q1, 2, 0) (q1, 0, 0)

b (q0, 0, 1) (q0, 1, 1) (q0, 2, 1) (q0, 1, 0) (q0, 2, 0) (q0, 0, 0)

For instance, ((q0, 1, 0), b, (q1, 0, 1)) ∈ E because in the minimal automa-

ton of L, q0.b = q1 and if |w| ≡ 0 (mod 2), then 1+(−1)|w|+1 ≡ 0 (mod 3).

To conclude, observe that valq0(a) = 1, b 6∈ Lq0 , a 6∈ Lq1 and valq1(b) = 0.

So, ((q0, 0, 1), a, f) and ((q1, 1, 1), b, f) also belong to the relation defining

the NFA.

To reach the final state, the words of even, respectively odd, length have

to be read starting from the initial state (q0, 0, 0), respectively the second

initial state (q0, 0, 1). If the reading of a word begins in the wrong initial

state with respect to the parity of its length, then no path can reach the

final state.

In the general framework of abstract numeration systems, we can con-

sider several kinds of questions about S-recognisability of sets of integers.

They are natural extensions of those considered in the classical context of

positional numeration systems.

• For a given set X ⊆ N, can we build an ANS S such that X is S-

recognisable?

• For a given ANS S, what kind of arithmetic operations on sets of integers

do preserve S-recognisability?

• For a given ANS S, what can be said about the S-recognisable subsets

of N?

• In particular, can we obtain some characterisation (logical, arithmetic,

whatever. . . ) of the S-recognisable subsets of N ?

• How S-recognisability is dependent on the ANS?
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As the reader may observe many challenging questions can be considered

in this context, also see the bibliographic notes at the end of the chapter for

other related questions. We are far from being able to answer all of them

but in the next pages, we will develop some of these topics. Also the use of

ANS casts some new light on well-known results occurring in the classical

context. Let us start with the following result.

Proposition 3.3.4 (Translation by a constant) Let S = (L,A,<) be

an ANS. If X ⊆ N is S-recognisable, then also X + t is S-recognisable for

all t ∈ N.

Proof See for instance (Lecomte and Rigo 2001). Taking into account the

theory of synchronised relations (Frougny and Sakarovitch 1993), the suc-

cessor map defined on L by w 7→ repS(valS(w) + 1) is shown to be realised

by a left letter-to-letter finite transducer (see Corollary 2.6.11) and the

conclusion follows. Also the paper (Angrand and Sakarovitch) is relevant

in that context, see Proposition 2.6.14.

The following result is proved in (Shallit 1994), also see Proposition 2.6.4.

Lemma 3.3.5 Let L be a regular language over the totally ordered alphabet

(A,<). The following languages are regular:

minlg (L) = {u ∈ L | w ∈ L,w 6= u, |w| = |u| ⇒ u ≺ w} ,

Maxlg (L) = {u ∈ L | w ∈ L,w 6= u, |w| = |u| ⇒ w ≺ u} .

The following observation is an immediate reformulation of the above

result. Because it will be used quite often we state it as a lemma.

Lemma 3.3.6 Let S = (L,A,<) be an ANS. The set {VL(n) | n ≥ 0} =

{Card(L ∩ A≤n) | n ≥ 0} is S-recognisable.

Example 3.1.17 about the set of triangular numbers {P (n) | n ≥ 0} where

P (n) = n(n+ 1)/2 can be revisited in light of this result.

3.3.1 Building ANS to recognise specific sets

Considering an infinite set X ⊆ N we can under particular circumstances

look for an ANS S = (L,A,<) such that X = {VL(n) | n ≥ 0}. This is the

case when X has the form given in the following result whose proof is the

main goal of this subsection.
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Theorem 3.3.7 Let m ≥ 1. For i = 1, . . . ,m, let Pi be polynomials be-

longing to Q[X ] such that Pi(N) ⊆ N and let ci be non-negative integers.

Set

f : N→ N, n 7→
m∑

i=1

Pi(n) cni .

The range f(N) is S-recognisable, for some ANS S which can be effectively

constructed.

The idea of the proof is to build a suitable regular language L having

the “right” counting function i.e., such that f(N) = {VL(n) | n ≥ 0} or

UL(n) = f(n + 1) − f(n) for large enough n. In view of Lemma 3.1.4

and Theorem 3.1.8, it seems reasonable to build such a regular language.

Then the conclusion will trivially follow from Lemma 3.3.6. Note that this

result can also be related to the work of (Carton and Thomas 2002) and

this connection will be discussed in Section 3.4.1.

Example 3.3.8 It is a classical result that, for all integer bases k ≥ 2,

the set of squares is never k-recognisable, see again (Eilenberg 1974). See

Example 1.3.16 for the base 10 case. Nevertheless, one can observe that

(n+ 1)2−n2 = 2n+ 1 and the language L = a∗b∗ ∪ a∗c∗ has exactly 2n+ 1

words of length n for all n ≥ 0. Hence {n2 | n ≥ 0} is S-recognisable for

any ANS based on L whatever is the total ordering on {a, b, c}.

Remark 3.3.9 In the above discussion, the S-recognisability of the con-

sidered set does not depend on the ordering of the alphabet. What only

matters is to apply Lemma 3.3.5 to the function VL which remains unaf-

fected when reordering the alphabet.

Definition 3.3.10 Let x and y be two words in A∗. The shuffle of x and

y is the finite language xtt y defined by

{x1y1 · · ·xnyn | x = x1 · · ·xn, y = y1 · · · yn, n ≥ 1, xi, yi ∈ A∗} .

The shuffle of two languages L1, L2 ⊆ A∗ is the language

L1 tt L2 = {w | ∃x ∈ L1, y ∈ L2 : w ∈ xtt y} =
⋃

x∈L1,
y∈L2

xtt y .

If L1, L2 are regular then also L1 tt L2 is regular, see for instance

(Eilenberg 1974, Proposition 3.5).

For each k ∈ N, we build recursively a regular language L[n 7→ nk] such

that UL[n7→nk](n) = nk for all n ∈ N. The first two languages L[n 7→ 1] and
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L[n 7→ n] are defined by L[n 7→ 1] = a∗ and L[n 7→ n] = a+b∗. Let k ≥ 2

and assume that we have L[n 7→ n0], . . . , L[n 7→ nk−1] at our disposal. The

induction step relies on the fact that if, for all n ≥ 0, UM (n) = (n + 1)k−1

then UM tt{c}(n) = nk provided that c is not a letter in alph(M). Indeed,

for each of the (n+ 1)k−1 words w of length n in M , w tt c contains n+ 1

words of length n+ 1. So there are exactly (n+ 1)k words of length n+ 1

in M tt{c}. Due to

(n+ 1)k−1 =

k−1∑

j=0

(
k − 1

j

)
nj

we build M as a finite union of the languages L[n 7→ n0], . . . , L[n 7→ nk−1]

written over pairwise disjoint alphabets Ai,j , i.e., if (i, j) 6= (i′, j′), then

Ai,j ∩ Ai′,j′ = ∅:

M =
k−1⋃

j=0

(k−1
j )⋃

i=1

Li,j

where Li,j ⊆ A∗
i,j is a copy of L[n 7→ nj ].

Proposition 3.3.11 Let P ∈ N[X ]. There exists an ANS S = (L,A,<)

such that P (N) is S-recognisable.

Proof The case where P is constant, is trivial. By Proposition 3.3.4 we

may assume that P (0) = 0. Since the polynomial P (n + 1) − P (n) only

contains powers of n with non-negative integer coefficients, by a union of

copies of languages L[n 7→ nk] over disjoint alphabets we can build a regular

language L ⊆ A∗ such that UL(n) = P (n+ 1)− P (n). Fix a total ordering

< on A and let S = (L,A,<).

To conclude the proof, we still need to find some integer ` such that the

first word of length ` in L has P (`) as numerical value. From the above

discussion, this will imply that, for all n ≥ `, P (n) is the numerical value

of the first word of length n in L. This is the aim of the next paragraph.

We can assume that ε ∈ L and that the first word w of length 2 in

the genealogically ordered language L is such that valS(w) = P (2). Indeed,

adding or removing a finite number of words of length 1 in a regular language

does not alter its regularity. We can add new letters to the alphabet to

increase at will the number of words of length 1. Note that we have to

consider words of length 2 and not words of length 1 because P (1) is not

necessarily equal to one and therefore cannot possibly be represented by

the first word of length 1. Contrarily to words of length 1, there is a single
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word of length 0 so we have no freedom to modify the number of words of

length 0.

Let n ≥ 2. Since UL(n) = P (n+ 1)− P (n), if the numerical value of the

first word of length n is P (n) then the numerical value of the first word of

length n+ 1 is P (n+ 1). Consequently, we have

repS(P (N) \ {P (1)}) = Min≺(L \A) .

By Lemma 3.3.5, P (N) is S-recognisable. A single word should possibly be

added to take into account the S-representation of P (1).

Lemma 3.3.12 Let k and t be two positive integers. There exists a regular

language L[n 7→ nk − t nk−1] such that

UL[n7→nk−t nk−1](n) =

{
nk − t nk−1, if n ≥ t,
0, otherwise.

Proof For k = 1 take the language L[n 7→ n1 − t n0] = at+1a∗b∗. Now

assume that k ≥ 2. From the above discussion, we have L[n 7→ nk] =

M tt{a} where L[n 7→ nk] ⊆ A∗ and a not belonging to alph(M). Let

n ≥ 1. For i = 1, . . . , n, L[n 7→ nk] has exactly nk−1 words of length n with

a occurring at position i (say, counted from the right). The language

L[n 7→ nk − t nk−1] = L[n 7→ nk] \
t−1⋃

i=0

A∗ aAi (3.8)

has nk − t nk−1 words of length n for n ≥ t.

Proposition 3.3.13 Let P ∈ Z[X ] be such that P (N) ⊆ N. There exists

an ANS S = (L,A,<) such that P (N) is S-recognisable.

Proof Without loss of generality, we may assume that deg(P ) = d+ 1 ≥ 1.

We proceed as in the proof of Proposition 3.3.11 and consider the polyno-

mial Q(n) = P (n+ 1) − P (n). Since P (N) ⊆ N, the leading coefficients of

P and Q are positive. By possibly adding extra terms of the form X j−Xj ,

if deg(Q) = d then to take advantage of the previous lemma, Q(X) can be

written as

d∑

`=0

c`X
` +X i1+1 − t1X i1 + · · ·+X ir+1 − tr X ir (3.9)

for some c0, . . . , cd ∈ N, i1, . . . , ir ∈ {0, . . . , d − 1} and t1, . . . , tr ∈ N \
{0}. Let t = sup{t1, . . . , tr, 2,m} where m is the least integer such that

P (n) < P (n+1) for all n ≥ m. Making the union of regular languages over
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disjoint alphabets of the kind L[n 7→ n`] and L[n 7→ nij − tj nij−1] given

by Lemma 3.3.12, we get a regular language L satisfying, for all n ≥ t,

UL(n) = Q(n).

Since t ≥ 2, we can assume that L contains exactly P (t) words of length

at most t− 1. This can be achieved by adding or removing a finite number

of words from the language L. Let S be an ANS based on the ordered

regular language L. The first word of length t has a numerical value equal

to P (t) and, for all n ≥ t, UL(n) = P (n+ 1)− P (n). Then we get

repS(P (N)) = (minlg (L) ∩ A≥t) ∪ {repS(P (0)), . . . , repS(P (t− 1))}
where A≥t denotes the set of all words of length at least t. By Lemma 3.3.5,

repS(P (N)) is regular.

As the third step we get a theorem of recognisability in the general case

of polynomials with rational coefficients. Interestingly, the proof relies on

the S-recognisability of arithmetic progressions.

Proposition 3.3.14 Let P ∈ Q[X ] be such that P (N) ⊆ N. There exists

an ANS S = (L,A,<) such that P (N) is S-recognisable.

Proof Assume that deg(P ) = d ≥ 1. Let s0, . . . , sd, cd ∈ N \ {0} and

c0, . . . , cd−1 ∈ Z be such that

P (X) =
cd
sd
Xd +

cd−1

sd−1
Xd−1 + · · ·+ c0

s0
.

Let s be the least common multiple of s0, . . . , sd. One has sP = Q with

Q ∈ Z[X ]. Since P (N) ⊆ N, then Q(N) ⊆ sN. As in the proof of Proposi-

tion 3.3.13, there exist t = sup{2,m} where m is the least integer such that

P (n) < P (n + 1), for all n ≥ m, and a regular language M over a totally

ordered alphabet (A,<) such that, for all n ≥ t,
UM (n) = Q(n+ 1)−Q(n) = s (P (n+ 1)− P (n)) .

We modify M by possibly adding or removing a finite number of words to

get VM (t − 1) = s P (t) = Q(t). Otherwise stated, if we set R = (M,A,<)

and w is the first word of length t in M , then valR(w) = Q(t). By Theo-

rem 3.3.1, the arithmetic progression sN is R-recognisable. Consequently,

L = repR(sN) is a regular language such that

VL(t− 1) = P (t) and, ∀n ≥ t, UL(n) = P (n+ 1)− P (n) .

Indeed L is obtained by taking in the genealogically ordered language M

the words at position is+ 1, i ∈ N. Since the first word of length t in M is

the first word of length t in L and its position in the genealogically ordered

language L is P (t), the conclusion follows from Lemma 3.3.5.
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Proposition 3.3.15 Let c ∈ N \ {0, 1} and P be a polynomial in Q[X ]

such that P (N) ⊆ N. There exists a numeration system S such that the set

{P (n) cn | n ∈ N} is S-recognisable.

Proof First assume that P ∈ Z[X ] and that it is non-constant. We show

how to construct a regular language L such that for all large enough n,

UL(n) = P (n+ 1) cn+1 − P (n) cn = [c P (n+ 1)− P (n)] cn .

The assumption P (N) ⊆ N implies that the polynomial c P (n+1)−P (n) ∈
Z[X ] has a positive leading coefficient. We can apply the same decomposi-

tion as in (3.9) and therefore proceed as in the proof of Proposition 3.3.13.

To get such a language L, it is enough to show how to construct, for all

k ≥ 0, a regular language L[n 7→ nkcn] having nk cn words of length n ≥ 0

and, for all t ≥ 1, a regular language with (nk − t nk−1) cn words of length

n ≥ t. As an intermediate step, also we construct, for all k > i ≥ 0, regular

languages Mk,i having nicn words of length n− k + i for all n > k.

If Card(A) = c, note that L[n 7→ n0cn] = A∗. So we build L[n 7→ n1cn]

and M1,0 first. Let A1, . . . , Ac be c pairwise disjoint alphabets of cardinality

c. The language M1,0 = A∗
1 ∪ · · · ∪ A∗

c is such that UM1,0(n − 1) = cn for

all n > 1. Let a1 be a letter not in alph(M1,0). To obtain L[n 7→ n1cn] we

take the words of length at least 2 in M1,0 tt{a1} and add c distinct words

of length 1.

Let k ≥ 2. Assume that we have Mk−1,0, . . . ,Mk−1,k−2 at our disposal.

We have to construct languages Mk,0, . . . ,Mk,k−1 and L[n 7→ nkcn]. Let

A1, . . . , Ack be ck pairwise disjoint alphabets of cardinality c. The language

Mk,0 = A∗
1 ∪ · · · ∪ A∗

ck is such that UMk,0
(n − k) = cn for all n > k. Now

assume that we have Mk,i for some i < k − 1. Let ai+1 be a letter not in

alph(Mk,i). Then for n > k, Mk,i tt{ai+1} has ni(n−k+ i+1)cn words of

length n−k+ i+1 because for each word of length n−k+ i in Mk,i we can

put the extra letter ai+1 in n− k+ i+ 1 positions. To get Mk,i+1 we make

the union of Mk,i tt{ai+1} and k − i − 1 copies over disjoint alphabets

of languages of the kind Mk,i ai+1. The extra letter concatenated at the

end of each words in Mk,i ensures that Mk,i ai+1 has nicn words of length

n− k+ i+1. Now Mk,k−1 has, for all n > k, nk−1cn words of length n− 1.

So if ak does not belong to alph(Mk,k−1), we consider the words of length

at least k + 1 in Mk,k−1 tt{ak} and we add a suitable number of words of

shorter length to get L[n 7→ nkcn]. Since a shuffle operation is involved in

this latter construction, using the same argument as in (3.8) we can build a

regular language having a complexity function (nk− t nk−1)cn for all n ≥ t.
To conclude the proof, if P ∈ Q[X ] \ Z[X ], then apply the same trick as

in the proof of Proposition 3.3.14.
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Repeating the construction given in this latter proof to get several regu-

lar languages over distinct alphabets, the reader should be convinced that

Theorem 3.3.7 stated at the beginning of this section is derived easily.

3.3.2 ANS based on slender languages

A language L is said to be slender, if there exists d such that UL(n) ≤ d

for all n ≥ 0. For ANS based on slender languages, S-recognisable sets are

completely characterised.

Theorem 3.3.16 Let L ⊆ A∗ be a slender regular language and S =

(L,A,<). A set X ⊆ N is S-recognisable if, and only if, X is a finite

union of arithmetic progressions.

Proof By a well-known characterisation of slender languages†, there exist

k ≥ 1 and words xi, yi, zi, 1 ≤ i ≤ k, such that

L =

k⋃

i=1

xi y
∗
i zi ∪ F, xi, zi ∈ A∗, yi ∈ A+

where the sets xi y
∗
i zi are pairwise disjoint and F is a finite set. The se-

quence (UL(n))n∈N is eventually periodic of period p = lcmi|yi|. Moreover,

for n large enough, if xi y
n
i zi is the m-th word of length |xi zi|+ n |yi| then

xi y
n+p/|yi|
i zi is the m-th word of length |xi zi|+ n |yi|+ p. Roughly speak-

ing, for sufficiently large n, the structures of the ordered sets of words of

length n and n+ p are the same. The regular subsets of L are of the form
⋃

j∈J

xij
(y

tj

ij
)∗zij

∪ F ′ (3.10)

where J is a finite set, ij ∈ {1, . . . , k}, tj ∈ N and F ′ is a finite subset of

L. Now we can conclude. If X is S-recognisable, then repS(X) is a regular

subset of L of the form (3.10). In view of the first part of the proof, it

is clear that X is eventually periodic with period lcm(p, lcmj |ytj

ij
|). The

converse follows from Theorem 3.3.1.

Example 3.3.17 Consider the language L = ab∗c ∪ b(aa)∗c. It contains

exactly two words of each positive even length: ab2ic ≺ ba2ic and one word

for each odd length larger than 2: ab2i+1c. The sequence UL(n) is eventually

periodic of period two: 0, 0, 2, 1, 2, 1, . . ..

† See for instance (Păun and Salomaa 1995) or independently (Shallit 1994). Compare
this result with the one given in Theorem 3.3.21.
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Corollary 3.3.18 Let S be a numeration system based on a slender lan-

guage. If X,Y ⊆ N are S-recognisable, then X + Y and tX are S-
recognisable for all t ∈ N.

Proof It is clear that if X,Y ⊆ N are eventually periodic, then X + Y and

tX are also eventually periodic.

3.3.3 Multiplication by a constant

From Corollary 3.3.18 given above, if S = (L,A,<) is an ANS based on a

slender language and if X ⊆ N is S-recognisable, then for any given non-

negative integer t, the set tX is again S-recognisable. Such a property is

also well-known for the usual k-ary numeration systems and more generally

for the Pisot numeration systems sketched in Example 3.1.14. One can

therefore consider the following general problem of characterising ANS S
such that multiplication by a constant is S-recognisability-preserving that

is, for all S-recognisable sets X ⊆ N and for all t ∈ N, the set tX =

{tx | x ∈ X} is still S-recognisable. This is the most basic arithmetic

operation to consider. A more ambitious task is to consider addition of two

S-recognisable sets X + Y = {x+ y | x ∈ X, y ∈ Y } and look for ANS such

that the resulting set is again S-recognisable. Note that even for the usual

integer base systems, if X and Y are two k-recognisable sets of integers,

then in general the set X.Y = {xy | x ∈ X, y ∈ Y } is not k-recognisable.

Definition 3.3.19 If w1, . . . , wn are words over A of arbitrary, and not

necessarily equal, lengths then the padding (w1, . . . , wn)# is defined as

(#m−|w1|w1, . . . ,#
m−|wn|wn)

where m = max{|w1|, . . . , |wn|} and # is a new padding symbol. Such an

n-tuple can be considered as a single word over the alphabet (A∪{#})n ob-

tained as the Cartesian product of n copies of A∪{#}. The concatenation of

two words (u1, . . . , un) and (v1, . . . , vn) over (A∪{#})n is (u1v1, . . . , unvn)

where the usual concatenation product is considered component-wise.

Remark 3.3.20 Assume that addition in an ANS S = (L,A,<) is com-

putable by finite automaton, i.e., its graph

G = {(repS(x), repS(y), repS(x+ y))# | x, y ≥ 0}

is regular where the shortest words are padded with an extra symbol #

to get three components of same length, that is, we get words over the

Cartesian product (A∪{#})×(A∪{#})×(A∪{#}) and the corresponding
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DFA reads simultaneously one symbol from the three components. By

considering G ∩ {(v, v, w)# | v ∈ L,w ∈ A∗} then multiplication by 2

is also computable by finite automaton and in particular, multiplication

by 2 is therefore S-recognisability-preserving. By iterating this kind of

arguments, if addition is computable by finite automaton, then it is the

same for multiplication by any constant t ∈ N.

First let us recap some well-known facts about the complexity function of

regular languages. A language is said to be polynomial (or sparse) if there

exists some non-negative integer k such that UL(n) ∈ O(nk). If the regular

language is infinite, one can show that there exist a constant C > 0 and an

infinite sequence of integers n1 < n2 < · · · such that UL(nj) ≥ Cnk
j for all

j ≥ 1. Infinite slender languages are in particular polynomial. Deterministic

finite automata accepting polynomial regular languages have some specific

properties. A well-known description of the polynomial regular languages

and the dichotomy existing with exponential languages are for instance

given in (Szilard, Yu, Zhang, et al. 1994). We recall these two statements

below. Obviously only states which are both accessible and co-accessible

have an impact on the complexity function (see Chapter 1 for definition of

accessibility).

Theorem 3.3.21 Let A = (Q,A,E, {q0}, T ) be an accessible and co-

accessible DFA. The language L accepted by A is polynomial if, and only

if, all states q ∈ Q belong to at most one cycle in A. In particular, L

is polynomial if, and only if, it is a finite union of languages of the form

u1v
∗
1u2v

∗
2 · · ·utv

∗
t ut+1.

Note that it is algorithmically decidable whether or not the language

accepted by a DFA given as an input is polynomial. This question is for

instance considered in Theorem 11.1.27.

Theorem 3.3.22 A regular language L is either polynomial or there exist

C > 0 and an infinite sequence n1 < n2 < · · · such that the complexity

function of L satisfies, for all j ≥ 1, UL(nj) = 2f(nj) where f(nj) ≥ C nj .

If a regular language is not polynomial, then we shall say that it is ex-

ponential. Note that in general, we cannot give a suitable lower bound

on UL(n) for every large enough n. It is the reason why in the above

theorem, we have not written f ∈ Ω(n) but instead have given a lower

bound for infinitely many n. Consider for instance the regular language

L = {aa, ab, ba, bb}∗. We have, for all n ≥ 0, UL(2n) = 22n and

UL(2n + 1) = 0. Therefore this language is exponential but even in this

case, for infinitely many m, UL(m) = 0.
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Next we sketch a picture of the main results about preservation of S-

recognisability after multiplication by a constant.

Proposition 3.3.23 Let S = (a∗b∗, {a, b}, a < b). If t ∈ N is an odd

square, then for all S-recognisable set X ⊆ N, tX is again S-recognisable.

Otherwise, there exists an S-recognisable set Y ⊆ N such that t Y is not

S-recognisable.

The proof is given in (Lecomte and Rigo 2001) and involves Pell equa-

tions. It is due to the expression (3.2) of valS(aibj) which is a polynomial of

degree 2 in i and j. Let us point out that the arguments developed in this

proof are also useful to give a counter-example showing that S-automaticity

is not preserved after periodic deletion, see (Rigo and Maes 2002). The fact

revealed in the previous proposition when t is not a square is a special case of

some general phenomenom (Rigo 2002) about ANS on polynomial regular

languages.

Theorem 3.3.24 Let S be an ANS based on a polynomial regular language

L. Suppose that there exist C > 0 and an integer k ≥ 1 such that UL(n) ∈
O(nk) and for infinitely many n, UL(n) ≥ Cnk. If t is not the (k + 1)th

power of an integer, then there exists an S-recognisable set Y ⊆ N such that

t Y is not S-recognisable.

Having this theorem at hand, it seems natural to determine which suit-

able powers may preserve recognisability. For specific kind of polynomial

languages of any degree, we have the following result. Notice that for n = 1,

we have a slender language and the case n = 2 is exactly the one considered

in Proposition 3.3.23.

Proposition 3.3.25 (Charlier, Rigo, and Steiner 2008) Let n ≥ 3.

Let A be the ordered alphabet {a1 < · · · < an} and S = (a∗1 · · · a∗n, A,<)

be an ANS. For all t ≥ 2, there exists an S-recognisable set Y ⊆ N such

that t Y is not S-recognisable.

Also details are given in (Charlier 2009). In general, exponential lan-

guages with a polynomial complement do not preserve recognisability after

multiplication by a constant.

Proposition 3.3.26 Let A be an alphabet such that Card(A) ≥ 2. Let

L ⊂ A∗ be an infinite polynomial regular language and S be an ANS based

on its complement A∗ \ L. There exists an S-recognisable set Y ⊆ N and

an integer t such that t Y is not S-recognisable.
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Arguments appearing in Example 3.1.7 and in the proof of this proposi-

tion as given in (Rigo 2002) are based on similar techniques involving the

pumping lemma.

In view of these results and except for very special cases like the slender

languages or A∗, we can conclude that the only regular languages that are

possibly suited to define ANS for which recognisability is preserved after

arithmetic operations, are necessarily exponential languages with exponen-

tial complement.

3.4 Automatic sequences

In (Cobham 1972), it is shown that an infinite word x = x0x1x2 · · · over an

alphabet B is obtained as the image under a coding τ : A→ B of the fixed

point of a morphism σ : A → A∗ of constant length k if, and only if, there

exists a DFAO A = (Q,A, δ, {q0}, B, µ) such that xn = µ(δ(q0, repk(n))) for

all n ≥ 0. This result closely relates the constant length of the morphism to

the base k numeration system and also explains the consecrated terminology

of k-automatic sequences †, i.e., the nth term of the sequence is generated

by an automaton with output “fed” with the k-ary representation of n.

A natural generalisation of this iterative process used to define infinite

words is to relax the hypothesis about the constant length of σ and to

consider an arbitrary non-erasing prolongable morphism σ : A → A∗ and

an extra coding. Hence what kind of numeration system should replace

the usual k-ary one? In this section, we prove the following analogue of

Cobham’s theorem from 1972 where ANS come into play and we discuss

some of its applications to S-recognisable sets.

Theorem 3.4.1 Let x = x0x1x2 · · · be an infinite word over an alphabet

B. This word is substitutive if, and only if, there exists an ANS S =

(L,A,<) and a DFAO (Q,A, δ, {q0}, B, µ) such that for all n ≥ 0, xn =

µ(δ(q0, repS(n))).

This result splits into Propositions 3.4.12 and 3.4.16. The next definition

naturally extends the classical generation process of k-automatic sequences.

† Originally A. Cobham was using the terminology of tag sequences referring to the gen-
eration process of the infinite word. Let us quote (Cobham 1972): “Adding a feedback
feature which permits symbols produced at early stages of the generating process to be
re-examined at later stages increases flexibility and the variety of sequences generable
by devices so augmented is substantially richer.. . . Suppose we have generated symbols
with index 0 through 2k − 1 and that our left hand points at the k-th of these, our
right hand at the last. We observe the symbol at which our left hand is pointing and
write with our right the 2k-th and (2k +1)-st as prescribed. Moving our left hand one
symbol to the right, we are in position to repeat the procedure.”.
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Definition 3.4.2 Let S = (L,A,<) be an ANS. We say that an infi-

nite word x = x0x1x2 · · · ∈ BN is S-automatic, if there exists a DFAO

(Q,A, δ, {q0}, B, µ) such that xn = µ(δ(q0, repS(n))) for all n ≥ 0.

Example 3.4.3 We consider the alphabets A = {a, b}, B = {0, 1, 2, 3},
the ANS S = (a∗b∗, A, a < b) of Example 3.1.12 and the DFAO depicted in

Figure 3.5 We obtain the first few terms of the corresponding S-automatic

0 1 2 3

b

a

a a

a

bb

b

Fig. 3.5. A DFAO with output alphabet {0, 1, 2, 3}.

sequence x = 0102303120023101012302303120312023100231012 · · · .
Notice that taking the ANS R = ({a, ba}∗{ε, b}, {a, b}, a < b) of Exam-

ple 3.1.15 we obtain another infinite word y = 01023131023 · · · which is

R-automatic (underlined letters indicate the differences between x and y).

This stresses the fact that an S-automatic sequence really depends on two

ingredients: an ANS and a DFAO.

Example 3.4.4 Let S = (Bk, {0, . . . , k − 1}, <) be the ANS correspond-

ing to the usual k-ary numeration system where the language Bk =

{0, . . . , k − 1}∗ \ 0{0, . . . , k − 1}∗ is as in Example 3.1.11. By consider-

ing a DFAO (Q, {0, . . . , k − 1}, δ, {q0}, B, µ), the sequence defined, for all

n ≥ 0, by xn = µ(δ(q0, repS(n))) is S-automatic. So k-automatic sequences

are special cases of S-automatic sequences.

The next lemma is a powerful result that allows to get rid of the erasing

behaviour that can appear in the two morphisms used for generating a

substitutive word and restricts the second one to a coding. A proof† of this

result is given in (Allouche and Shallit 2003). This result is also expressed

by Theorem 4.6.1.

Lemma 3.4.5 (Cobham 1968) Let A,B,C be three alphabets. Consider

two arbitrary morphisms σ : A → A∗ and τ : A → B∗ such that τ(σω(a))

is an infinite word. There exist a non-erasing morphism α : C → C+

prolongable on a letter c ∈ C and a coding β : C → B such that

τ(σω(a)) = β(αω(c)) .

† Have a look, one needs to define dead and moribund letters.
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The idea of the following result is to consider the end point, being or not

a final state does not matter, of all paths that can be achieved in a DFA.

These paths are naturally genealogically ordered with respect to their label.

Recall that S is the shift operator introduced in Chapter 1.

Lemma 3.4.6 Let A = {a1 < · · · < an} be a totally ordered alphabet,

A = (Q,A,E, {q0}, T ) be a DFA where E defines a partial function δA :

Q×A→ Q and let z 6∈ Q. Define the morphism ψA : Q∪{z} → (Q∪{z})∗
by ψA(z) = z q0 and, for all q ∈ Q,

ψA(q) = δA(q, a1) · · · δA(q, an) .

In this latter expression, if δA(q, ai) is not defined for some i, then it is

replaced by ε. Let L be the regular language accepted by (Q,A,E, {q0}, Q)

where all states of A are final. Then the shifted sequence S(ψω
A(z)) is the

sequence (xn)n∈N of the states reached in A by the words of L in genealogical

order, i.e., for all n ∈ N,

xn = δA(q0, wn)

where wn is the (n+ 1)st word of the genealogically ordered language L.

Prior to the proof, let us give a short example to set properly the frame-

work.

Example 3.4.7 Consider the DFA given in Figure 3.6. Note that the

automaton is not complete, the transition function δ is partial: from q1 one

cannot read b. Assume a < b. The sequence of the ordered words in the

q0 q1 q2
a

a

a

b

b

Fig. 3.6. A DFA.

language accepted by the automaton where all states are considered as final

states are

(wn)n≥0 = ε, a, b, aa, ba, bb, aaa, aab, baa, bab, bba, aaaa, . . . .

The corresponding sequence of states is

(δ(q0, wn))n≥0 = q0, q1, q2, q2, q0, q1, q0, q1, q1, q2, q2, q1, . . . .

For instance, the second q2 in the sequence, i.e., its fourth element, is the
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state reached by the DFA when reading aa, i.e., the fourth word w3, from

q0. Now consider the morphism

ψ :





z 7→ z q0
q0 7→ q1 q2
q1 7→ q2
q2 7→ q0 q1 .

One can observe that the introduction of the extra letter z gives a pro-

longable morphism: in this example only ψ(z) begins with z, for x ∈
{q0, q1, q2}, ψ(x) does not start with x. Now, one can compute the pre-

fix of ψω(z),

ψω(z) = z q0 q1 q2 q2 q0 q1 q0 q1 q1 q2 q2 q1 q2 q2 q2 · · · .

Now let us give the proof of Lemma 3.4.6.

Proof First observe that we have the following factorisation:

ψω
A(z) = zx0x1x2 · · · = z q0 ψA(q0)ψ

2
A(q0) · · ·

and x0 = q0 = δA(q0, ε). Then by definition of ψA, if xn = δA(q0, wn),

n ≥ 0, then the factor

un = ψ(xn) = δA(q0, wna1) · · · δA(q0, wnan) (3.11)

appears in ψω
A(z) with the usual convention of replacing with ε the undefined

transitions. Indeed, zx0x1x2 · · · is a fixed point of ψA and each xn produces

a factor ψA(xn) = un appearing later on in the infinite word. Moreover

this factor is preceded by δA(q0, wn−1a1) · · · δA(q0, wn−1an) and followed by

δA(q0, wn+1a1) · · · δA(q0, wn+1an). It is therefore clear that we get all states

reached from the initial state when considering in increasing genealogical

order the labels of all the paths in A.

Remark 3.4.8 We use the notation of Lemma 3.4.6. Note that the mor-

phism ψA given in the previous statement depends only on Q, A and E but

not on the set of final states T . In the literature, one can find the terminol-

ogy transition structure when final states are unspecified or unimportant.

In particular, there is no relation between the language recognised by A
and the infinite word S(ψω

A(z)).

If A contains no cycle, i.e., if the language recognised by A is finite, then

the fixed point of ψA starting with z is also finite.

Example 3.4.9 Also the reader could have the feeling that the introduc-

tion of the extra letter z such that ψA(z) = zq0 is artificial. In particular, if
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the initial state has a loop. Let us consider the following example given by

the DFA depicted in Figure 3.7. Let us compare the infinite words generated

q0 q1 q2

a

a

a

b

b

Fig. 3.7. Another DFA.

by the morphism

µ :





q0 7→ q0 q2
q1 7→ q2
q2 7→ q0q 1

and by the morphism ψA given by Lemma 3.4.6 and defined by ψA(z) = zq0
and ψA(x) = µ(x) for x ∈ {q0, q1, q2}. We get

ψω
A(z) = zq0q0q2q0q2q0q1q0q2q0q1q0q2q2q0q2 · · ·

but

µω(q0) = q0q2q0q1q0q2q2q0q2q0q1q0q1q0q2 · · · .

One can show that the sequence µω(q0) is the sequence of states reached

from q0 by considering only words in the DFA starting with b instead of

taking into account all the possible paths. Of course, one cannot simply

remove the loops of label a from q0 because it may be used not only by

paths starting with a.

In Lemma 3.4.6, we have in a canonical way associated with any DFA,

even with any labelled directed graph, a morphism. Now we present some

kind of converse construction. Note that this construction is very close to

the prefix-suffix graph introduced in Definition 5.2.4.

Definition 3.4.10 Let us adapt a classical construction encountered in the

case of k-automatic sequences. Any pair given by a morphism σ : A→ A∗

and a letter a ∈ A can be canonically associated with a DFA denoted Aσ,a

and defined as follows. Let ‖σ‖ = maxb∈A |σ(b)|. The alphabet of Aσ,a is

{1, . . . , ‖σ‖}, its set of states is A. The initial state is a. For all b ∈ A and

i ∈ {1, . . . , |σ(b)|}, we set δ(b, i) = σ(b)[i, i] to define the partial transition

function of Aσ,a. There is usually no need to specify the final states. One

can for instance set T = A as the set of final states.

Moreover, if an extra morphism τ : A → B∗ is given, then we extend
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Aσ,a to define a DFAO Aσ,a,τ where the output function is given precisely

by τ .

Example 3.4.11 With the notation of the previous definition, consider the

alphabets A = {a, b, c}, B = {d, e} and the morphisms

σ : A→ A+,





a 7→ abc

b 7→ bc

c 7→ aac

and τ : A→ B,

{
a 7→ d

b, c 7→ e .

The corresponding automaton Aσ,a,τ is given in Figure 3.8 and the output

function is represented on the outgoing arrows.

a

b

c
d

e

e

1

1

3

2

3 2

1, 2

Fig. 3.8. The automaton Aσ,a,τ .

Proposition 3.4.12 Let σ : A → A∗ be a morphism prolongable on the

letter a ∈ A and τ : A → B∗ be a morphism such that x = τ(σω(a)) is

infinite. There exists an abstract numeration system S such that x ∈ BN is

an S-automatic sequence.

Proof Thanks to Lemma 3.4.5, we can assume that σ is non-erasing and

that τ is a coding. Let C = {1, . . . , ‖σ‖} ⊂ N and consider the automaton

Aσ,a = (A,C,E, {a}, T ) as given in Definition 3.4.10 where T = A, i.e., all

states are final.

Let L ⊆ C∗ be the language recognised by Aσ,a. This language will

be used to build an abstract numeration system S to show that x is S-

automatic. The alphabet C being a subset of N, we will consider the natural

ordering of C. Since σ(a) ∈ aA+, it is clear that if w ∈ L then 1w ∈ L.

Indeed by definition of Aσ,a, its initial state a has a loop labelled by 1,

the first letter in C. If we apply Lemma 3.4.6 to this automaton Aσ,a, we

obtain a morphism ψAσ,a
generating the sequence of the states reached by

the words of L. This morphism is defined as follows. Let z 6∈ A. We have

ψAσ,a
(z) = za and, for all b ∈ A, ψAσ,a

(b) = σ(b).

The main point leading to the conclusion is to compare ψω
Aσ,a

(z) and
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σω(a). There exists u ∈ A+ such that σ(a) = au. We have the following

factorisations

σω(a) = au σ(u)σ2(u)σ3(u) · · ·

and

ψω
Aσ,a

(z) = za a u σ(a)σ(u)σ2(a)σ2(u)σ3(a)σ3(u) · · · .

If we erase the factors z, a, σ(a), σ2(a), . . . occurring in that order in the

above factorisation of ψω
Aσ,a

(z), we recover σω(a). Recall that ψω
Aσ,a

(z) is,

except for z, the sequence of states reached in Aσ,a by considering all the

possible paths in genealogical order. The second occurrence of a in ψω
Aσ,a

(z)

is the state reached in Aσ,a when reading 1 ∈ L. By the property (3.11) of

ψAσ,a
, the factor σn(a) in the above factorisation corresponds to the states

reached in Aσ,a when reading the words in L of length n+ 1 starting with

1. Consequently, when giving to Aσ,a the words of L \ 1C∗ in increasing

genealogical order, we build exactly the sequence σω(a) = (yn)n≥0, i.e., if

w0 ≺ w1 ≺ w2 ≺ · · · are the words of L \ 1C∗ in genealogical order, then

yn = δ(a, wn) where δ is the transition function of Aσ,a. To conclude, one

has to consider the automaton Aσ,a,τ as a DFAO with the ANS S built over

L \ 1C∗ to see that the sequence τ(σω(a)) is S-automatic.

Example 3.4.13 We illustrate the previous proof by considering the mor-

phisms of Example 3.4.11 and the automaton Aσ,a,τ given in Figure 3.8.

We thus have a morphism ψAσ,a

ψAσ,a
: A ∪ {z} → (A ∪ {z})+ :





z 7→ za

a 7→ σ(a) = abc

b 7→ σ(b) = bc

c 7→ σ(c) = aac .

Let u = bc and σ(a) = au. If we underline the factors z, a, σ(a), σ2(a), . . .

we have

ψω
Aσ,a

(z) = zaabcabcbcaacabcbcaacbcaacabcabcaac · · · .

Erasing the underlined factors, we get abcbcaacbcaacabcabcaac · · · which is

exactly σω(a).

The statement of the next result explicitly introduces the language that

was built in the proof of Proposition 3.4.12. We can say that the language

L \ 1C∗ is the directive language of σ: if the letters in σω(a) are indexed

by the words in L \ 1C∗, then we know precisely which letter is producing

which factor through the morphism.
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Corollary 3.4.14 Let σ : A→ A∗ be a non-erasing morphism prolongable

on the letter a ∈ A such that x = (xn)n≥0 = σω(a) is infinite. Consider the

ANS S built over L \ 1C∗ where C = {1, . . . ,maxb∈A |σ(b)|} and L is the

language accepted by Aσ,a. Let w ∈ L be such that |σ(xvalS(w))| = `. Then

σ(xvalS(w)) = xvalS(w1) · · ·xvalS(w`) .

In the above formula, for i ∈ {1, . . . , `}, wi has to be understood as the

concatenation of w ∈ L ⊆ C∗ and i ∈ C.

Proof It is a direct consequence of the proofs of Lemma 3.4.6 and Propo-

sition 3.4.12.

An independent proof is the following one. We even get another proof

that xn = δσ(a, repS(n)) where δσ is the partial transition function of Aσ,a.

Consider the adjacency matrix M ∈ NA×A of Aσ,a, see Section 1.4 for

the definition. For all s > 0 and b, c ∈ A, [Ms]b,c is the number of paths of

length s from b to c in Aσ,a. Since all states of this latter automaton are

final, the number Ns of words of length s accepted by Aσ,a is obtained by

summing up all the entries of Ms in the row corresponding to the initial

state a. Because Aσ,a has a loop of label 1 in a, the number of words of

length s accepted by Aσ,a and starting with 1 is equal to the number Ns−1

of words of length s − 1 accepted by Aσ,a. Consequently, the number of

words of length s in the language L \ 1C∗ is exactly Ns −Ns−1. From the

definition of Aσ,a, the matrix M can also be related to the morphism σ and

Mb,c is the number of occurrences of c in σ(b). Summing up all entries in

the row of Ms corresponding to a gives |σs(a)|. Therefore, the number of

words of length s in L \ 1C∗ is |σs(a)| − |σs−1(a)| and we get that

| repS(n)| = s⇔ n ∈ {|σs−1(a)|, . . . , |σs(a)| − 1}. (3.12)

In particular, if 0 < n < |σ(a)|, we have | repS(n)| = 1 and in this case†
repS(n) = n + 1. Since we have repS(0) = ε and σ(a) = au, for some

u ∈ Σ∗, we get x0 = a = δσ(a, repS(0)). Hence, by the definition of Aσ,a,

we have that xn = δσ(a, repS(n)) for n < |σ(a)|. Now let s > 0 and assume

that xn = δσ(a, repS(n)) for all n < |σs(a)|. Let |σs(a)| ≤ n < |σs+1(a)|.
There exists a unique |σs−1(a)| ≤ m < |σs(a)| such that

σs+1(a) = σs−1(a)uxm v︸ ︷︷ ︸
σs(a)

σ(u) y xn z︸ ︷︷ ︸
σ(xm)

σ(v),

for some words u, v, y, z. Therefore xn = (σ(xm))i−1 for some i ∈
† In order to have repS(n) = n, one could work instead with the alphabet C ′ =

{0, . . . ,maxb∈A |σ(b)| − 1}.
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{1, . . . , |σ(xm)|}. Then by the definition of Aσ,a, we have

xn = δσ(xm, i) = δσ(δσ(a, repS(m)), i) = δσ(a, repS(m)i)

and in view of condition (3.12) and again by the definition of Aσ,a, we get

valS(repS(m)i) = |σs(a)|+ |σ(x|σs−1(a)|)|+ · · ·+ |σ(xm−1)|+ i = n.

Hence, repS(n) = repS(m)i and the result follows.

Example 3.4.15 The infinite word generated by the morphism σ given

in Example 3.4.11 is (xn)n≥0 = abcbcaacbcaacabcabcaac · · · . The first few

words without leading 1 accepted by the automaton given in Figure 3.8

where all states are final are ε, 2, 3, 21, 22, 31, 32, 33, 211, . . . . This

provides us with an ANS S.

For instance, we consider the element x3 = b. This is why it has been

underlined. We know that σ(b) = bc. So this latter factor should appear

later on in the infinite word and the previous corollary permits us to find

where it occurs. The S-representation of 3 is 21. So we have to consider

the words 211 and 212 — only these two words because |σ(b)| = 2 — and

valS(211) = 8, valS(212) = 9. Therefore, one can check that x8x9 = σ(b) =

bc.

Now we turn to the converse of Proposition 3.4.12.

Proposition 3.4.16 Every S-automatic sequence is substitutive.

Proof Let S = (L,A,<) be an ANS. Let A = (Q,A,E, {q0}, T ) be a

complete DFA with transition function δA : Q×A∗ → Q recognising L and

B = (R,A, δB, {r0}, B, µ) be a DFAO generating an S-automatic sequence

x = (xn)n≥0 over B, i.e., for all n ≥ 0, xn = µ(δB(r0, repS(n))).

Consider the Cartesian product automaton P = A×B defined as follows.

The set of states of P is Q×R. The initial state is (q0, r0) and the alphabet

is A. For any word w ∈ A∗, the transition function ∆ : (Q×R)×A∗ → Q×R
is given by

∆((q, r), w) = (δA(q, w), δB(r, w)) .

This means that the product automaton mimics in a single automaton,

the behaviours of both A and B. In particular, after reading w in P ,

∆((q0, r0), w) belongs to F × R if, and only if, w belongs to L. Moreover,

if repS(n) = w and ∆((q0, r0), w) = (q, r), then xn = µ(r).

Now we can apply Lemma 3.4.6 to P and define a morphism ψP pro-

longable on a letter z which does not belong to Q × R. In view of the
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previous paragraph, we define ν : (Q×R) ∪ {z} → B∗ by

ν(q, r) =

{
µ(r), if q ∈ F,
ε, otherwise

and ν(z) = ε. As Lemma 3.4.6 can be used to describe the sequence of

reached states, ν(ψP (z)) is exactly the sequence (xn)n≥0.

Note that the morphisms obtained at the end of this proof are erasing.

Again, if needed, Lemma 3.4.5 can be used.

3.4.1 Some properties of S-automatic sequences

Here we give a characterisation of S-automatic sequences in terms of finite-

ness of its S-kernel and then study the relationship between S-automaticity

and S-recognisability. We conclude this subsection with some discussion

about the theorem of Cobham.

Definition 3.4.17 Let S = (L,A,<) be an ANS. For each word w in A∗,
we define a, possibly finite or empty, ordered set of integers:

IS(w) = {n | repS(n) ∈ A∗w} = valS(L ∩A∗w) = {iw,0 < iw,1 < · · · } .

In particular if s is a suffix of w, then IS(w) ⊆ IS(s). Also we define a

partial function αS mapping (w, n) ∈ A∗ × N onto iw,n. For all w ∈ A∗,
defining the ANS Sw = (L ∩ A∗w,A,<), we get

αS(w, n) = valS(repSw
(n)), whenever defined .

Example 3.4.18 Consider the language L accepted by the DFA depicted

in Figure 3.2 from Example 3.2.1. Since the first few words in L are

repS(n) b aa abb bab bba aaab aaba abaa baaa bbbb . . .

n 0 1 2 3 4 5 6 7 8 9 . . .

we get IS(ε) = N, IS(a) = {1, 4, 6, 7, 8, . . .}, IS(b) = {0, 2, 3, 5, 9, . . .},
IS(aa) = {1, 7, 8, . . .}, etc. So αS(ε, n) = n for all n ≥ 0, αS(a, 0) = 1,

αS(a, 1) = 4, αS(a, 2) = 6, αS(b, 0) = 0, αS(b, 1) = 2, αS(b, 2) = 3, etc.

Recall that, for k ≥ 2, the k-kernel (also see Definition 9.1.1 where it is

used to define the concept of automatic sequence, as recalled below) of a

sequence (xn)n≥0 is the set of subsequences defined as

{(xkjn+r)n≥0 | j ≥ 0, 0 ≤ r < j} .

Otherwise stated, we consider all the subsequences obtained by taking all

the indices that are congruent modulo a power of k. It is well-known that a
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sequence is k-automatic if, and only if, its k-kernel is finite, see for instance

(Allouche and Shallit 2003). With the definition of the map αS introduced

above, but by writing αk when dealing with the usual k-ary numeration

system on Bk = {0, . . . , k − 1}∗ \ 0{0, . . . , k − 1}∗, the usual k-kernel of a

sequence (xn)n≥0 can be rewritten as

{(xαk(w,n))n≥0 | w ∈ {0, . . . , k − 1}∗}
because a word u over {0, . . . , k−1} ends with a suffix w of length j if, and

only if, valk(u) mod kj = valk(w).

Definition 3.4.19 Let S = (L,A,<) be an ANS. The S-kernel of the

sequence (xn)n≥0 is the set of subsequences {(xαS (w,n))n≥0 | w ∈ A∗}.

Theorem 3.4.20 (Rigo and Maes 2002) A sequence x = (xn)n≥0 ∈ AN

is S-automatic if, and only if, its S-kernel is finite.

The proof is similar to the classical one.

Remark 3.4.21 It is obvious that a set of integers is S-recognisable if,

and only if, its characteristic word is S-automatic. Therefore a sequence

x = (xn)n≥0 ∈ AN is S-automatic if, and only if, for all a ∈ A, the a-fiber,

i.e., the set {n | xn = a}, is S-automatic.

Properties of the complexity function pw counting the number of factors

of a substitutive word w are well-known, see Chapter 4. These facts can be

taken into account to show that some sets are S-recognisable for no ANS S.

Take the Champernowne word over {0, 1} c = 0110111001011101111000 · · ·
obtained as the ordered juxtaposition of the binary representations of the in-

tegers. It is the characteristic word of a set of integers {1, 2, 4, 5, 6, . . .} which

is never S-recognisable because the complexity function of c is pc(n) = 2n

which is not an admissible behaviour for a substitutive word. Also it can

be shown that the set of primes is never S-recognisable (Mauduit 1988),

(Mauduit 1992), (Rigo 2000).

Remark 3.4.22 It is not difficult to prove that the characteristic sequence

of the set of squares can be generated using the morphism σ : a 7→ abcd,

b 7→ b, c 7→ cdd, d 7→ d iterated on a and a coding τ : a, b 7→ 1, c, d 7→ 0 (also

see the morphism and the coding given in Example 1.2.23). We can compare

this result with Example 3.3.8 and observe that the construction developed

in Section 3.3.1 can also be presented in the context of substitutive words. In

particular, one can notice that the same kind of results have been obtained

independently in (Carton and Thomas 2002) where some decidability of the

logical structure 〈N,+〉 extended with a substitutive predicate is sought.
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It is time to come back to the Cobham theorem (Theorem 1.5.5) and its

generalisation to ANS. Indeed, now we hope that thanks to Theorem 3.4.1

the reader is convinced that both formalisms of substitution or ANS are well

suited to define and study a relevant notion of recognisable sets of integers.

Let x, y be infinite fixed points of two morphisms µ, ν: µ(x) = x, ν(y) = y

and α, β be two codings. Roughly speaking, we would like to have a result of

the kind: if µ and ν are “independent” in a sense to be defined and if α(x) =

β(y), then the word α(x) is eventually periodic. Following G. Hansel’s work

about syndeticity (Hansel 1982, Hansel 1998), F. Durand has made a lot of

progress in that direction. For instance, if µ and ν are primitive and if

the corresponding dominating eigenvalues are multiplicatively independent

then the theorem of Cobham still holds, see (Durand 1998a). Later on more

cases can be taken into account, see (Durand 1998c), (Durand 2002) and

also (Durand and Rigo 2009) where the situation of two ANS, one defined

on a polynomial language and the other on an exponential one, is considered.

To obtain full generality, only a few cases remain unsolved.

Remark 3.4.23 Up to now there is no proof of a Cobham-like theorem for

a substitution having no main sub-substitution having the same dominating

eigenvalue like a 7→ aa0, 0 7→ 01 and 1 7→ 0. In this latter example,

the dominating eigenvalue is 2 but the substitution restricted to {0, 1} has

(1 +
√

5)/2 as dominating eigenvalue.

3.4.2 The HD0L ω-equivalence and periodicity problems

We recall some definitions about the so-called Lindenmayer systems. For an

account of these systems we refer to (Kari, Rozenberg, and Salomaa 1997),

also see Section 10.1. A D0L system is a triple G = (A, σ, u) where A is

a finite alphabet, u is a word over A and σ : A∗ → A∗ is a morphism,

the acronym D stands for “deterministic” and 0 stands for “zero-sided”.

An HD0L system, where H stands for “homomorphism”, is a 5-tuple G =

(A,B, σ, τ, u) where (A, σ, u) is a D0L system, B is a finite alphabet and

τ : A∗ → B∗ is a morphism. If u is a prefix of σ(u) and the set {σn(u) |
n ≥ 0} is infinite, we denote σω(u) = limn→∞ σn(u). Similarly, if G =

(A,B, σ, τ, u) is an HD0L system, u is prefix of σ(u) and the set {τ(σn(u)) |
n ≥ 0} is infinite, we denote ω(G) = limn→∞ τ(σn(u)). The HD0L ω-

equivalence problem is stated as follows. LetGi = (Ai, Bi, σi, τi, ui), i = 1, 2,

be two HD0L systems such that ω(G1) and ω(G2) exist. If ω(G1) = ω(G2),

then the two HD0L systems G1 and G2 are said to be ω-equivalent. Is it

possible to decide whether or not G1 and G2 are ω-equivalent? In fact,

HD0L systems are closely related to substitutive words.
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Lemma 3.4.24 Let G1 = (A,B, µ, ν, w) be an HD0L system such that

ω(G1) exists and |w| > 1. Then there exists an HD0L system G2 =

(C,B, σ, τ, c) ω-equivalent to G1 where the letter c ∈ C is prefix of σ(c).

Proof Assume that µ(w) = wu for some u ∈ A+ and w = w1 · · ·w`, ` ≥ 2,

with wi ∈ A for 1 ≤ i ≤ `. We have µn(w) = wuµ(u) · · · µn−1(u) for all

n ≥ 1. Let us introduce `+ 1 new letters c, w1, . . . , w` which do not belong

to A. The alphabet C is defined by C = A∪{c, w1, . . . , w`}. The morphism

σ : C∗ → C∗ is defined as follows, σ : c 7→ cw1, w1 7→ w2,. . . , w`−1 7→ w`,

w` 7→ u and for a ∈ A, σ(a) = µ(a). We get

lim
n→∞

σn(c) = cw1 · · ·w` uµ(u)µ2(u)µ3(u) . . . .

To conclude the proof, we define τ by τ(c) = ε, τ(wi) = ν(wi) for 1 ≤ i ≤ `
and τ(a) = ν(a) for a ∈ A. It is obvious that τ(σω(c)) = ν(µω(w)).

Remark 3.4.25 With the above lemma and Theorem 3.4.1, many clas-

sical open decision problems about HD0L systems can be restated in the

framework of ANS. See in particular Chapter 10. The HD0L ω-equivalence

problem is equivalent to the following problem expressed in terms of ANS.

Let Si = (Li, Ai, <i), i = 1, 2, be two abstract numeration systems. Is

it decidable, given regular languages Ki ⊆ Li, i = 1, 2, whether or not

valS1(K1) = valS2(K2)? In the same way, the problem of deciding whether

or not a given infinite HD0L word ω(G) is eventually periodic is equivalent

to the following problem. Let S = (L,A,<) be an ANS. Is it decidable,

given a regular language K ⊆ L, whether or not valS(K) is eventually pe-

riodic?

3.4.3 Multidimensional setting

If one goes to the multidimensional case, it is not difficult to mimic as

follows the construction of (Salon 1987), where images of letters are finite

multidimensional words with square or cube shapes of same dimension.

Let d ≥ 2, S = (L,A,<) and # be a symbol not in A. The idea to

define an S-automatic d-dimensional sequence x = (xi1 ,...,id
)i1,...,id≥0 over

an alphabet B (i.e., a map from Nd onto B) is to consider a DFAO B =

(Q, (A ∪ {#})d, δB, {q0}, B, µ) over the alphabet (A ∪ {#})d and to define

xi1,...,id
= µ(δB(q0, (repS(i1), . . . , repS(id))

#)) .

The padding operator # has been given in Definition 3.3.19.

One can therefore ask if Theorem 3.4.1 can be extended to this setting.
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We mention the following result without much details about it, merely some

informal description is given. Also see (Charlier 2009).

Theorem 3.4.26 (Charlier, Kärki, and Rigo 2010) Let d ≥ 1. The

d-dimensional infinite word x = (xi1,...,id
)i1,...,id≥0 is S-automatic for some

abstract numeration system S = (L,A,<) where ε ∈ L if, and only if,

x is the image under a coding of a morphic shape-symmetric infinite d-

dimensional word.

Observe that the proof of Proposition 3.4.12 makes use at the very begin-

ning of Lemma 3.4.5. So one of the main difficulties occurring in the proof

of the above theorem is that Lemma 3.4.5 has to be generalised to a multi-

dimensional setting. This is some technical business that we do not want to

present here. Nevertheless, we briefly describe using an example what is the

idea of the shape-symmetry introduced in (Maes 1999). Indeed, this notion

can be defined with plenty details and glory indices but a glimpse should

be enough to have a good idea of the result above, also see (Maes 1998),

(Maes 2000).

Example 3.4.27 Consider a map µ defined on the alphabet {a, . . . , h} and

whose images are finite rectangular arrays. We can use the same formalism

as in the definition of words and also define the concatenation of words in

any of the two directions provided that they have compatible shapes. For

instance, µ(a) and µ(b) can be concatenated horizontally but not vertically.

µ(a) = µ(f) =
a b

c d
, µ(b) =

e

c
, µ(c) = e b , µ(d) = f ,

µ(e) =
e b

g d
, µ(g) = h b , µ(h) =

h b

c d
.

In Figure 3.9 we have represented the first iterations of µ on the letter a.

As for prolongable morphisms, one can expect that this process will lead

to some bidimensional fixed point (xi,j)i,j≥0. The shape-symmetry mainly

refers to the fact that, for all i, j, if the image by µ of xi,j is a rectangle of size

`×m, then the image by µ of xj,i is a rectangle of size m×`. Also one must

ensure that the images of all the letters in a given column (respectively row)

have images which are rectangles with same length (respectively height).

An equivalent formulation is that the image by µ of any diagonal element

xi,i is a square. Some details are omitted, see (Maes 1999) for a complete

description.
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µ(a) =
a b
c d

, µ2(a) =
a b e
c d c
e b f

, µ3(a) =

a b e e b
c d c g d
e b f e b
e b e a b
g d c c d

Fig. 3.9. The first few iterations of µ.

3.5 Representing real numbers

The basic aim of this section is to introduce and summarise the material

found in (Lecomte and Rigo 2002), (Lecomte and Rigo 2004). The concern

is to extend the use of an ANS S = (L,A,<) to represent real numbers and

to study the properties of the proposed extension.

Roughly, the problem is reduced to the representation of numbers be-

longing to some subinterval of [0, 1]. The idea is to associate with a real

number x an infinite word w ∈ Aω that plays a role similar to its decimal

expansion: w will be the limit of a sequence of words w(n) in L used to

produce more and more accurate rational approximations x(n) of x that

eventually converge to it. Let us explain how they mimic the decimal sys-

tem or more generally, β-numeration systems, see Chapter 2. The rational

approximations provided by the decimal expansion .d1d2 · · · d` · · · of a real

number in (1/10, 1) are d1

10 ,
d1d2

100 , . . . ,
d1···d`

10` , . . .. They all take the form of a

fraction whose numerator is a prefix of some length ` of the expansion and

the denominator is the number of integers whose decimal representation

has length at most `. With that scheme in mind, for a sequence (w(n))n≥0

of words in L converging to an infinite word w, we set

x(n) =
valS(w(n))

VL(|w(n)|) . (3.13)

Under some suitable assumptions, (x(n))n≥0 is a converging numerical se-

quence and its limit x belongs to some interval canonically associated with

the language L. The prefixes w(n) of the representation w can be used to

approximate x. In the sequel, we assume that A is the minimal automaton

of the regular language L.

3.5.1 Extending valS

The set of the representations of the real numbers that we will describe is

Adh(L) := {w ∈ Aω | ∃(w(n))n≥0 ∈ LN, lim
n→∞

w(n) = w} .
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This notion of adherence appears in (Nivat 1978) and is studied in

(Boasson and Nivat 1980).

Proposition 3.5.1 The set Adh(L) is uncountable if, and only if, there

exist two cycles C and C ′ in any DFA accepting L such that C ∩ C ′ 6= ∅ and

C ∪ C′ contains an accessible state and a co-accessible state.

In the sequel, Adh(L) is obviously supposed to be uncountable. Also

we make some additional assumptions in order that the sequences (3.13)

converge when w belongs to Adh(L).

Hypothesis 3.5.2 For each q ∈ Q, either

(i) there exists Nq ∈ N such that Uq(n) = 0, for all n > Nq, or

(ii) there exist θq ≥ 1, Pq(x) ∈ R[x] and cq > 0 such that

lim
n→∞

Uq(n)

Pq(n)θn
q

= cq .

Since Adh(L) is uncountable, it follows from the above proposition that

the language L has an exponential growth and therefore that θ := θq0 > 1.

Replacing Pq0 by Pq0/cq0 , we may assume in what follows that

lim
n→∞

Uq0(n)

Pq0(n)θn
= 1 =: aq0 and, for all q ∈ Q, aq := lim

n→∞
Uq(n)

Pq0(n)θn
≥ 0 .

Proposition 3.5.3 Let S be an ANS based on a language satisfying Hy-

pothesis 3.5.2. If w = w0w1 · · · ∈ Adh(L) is the limit of a sequence

(w(n))n≥0 of words in L, then

x := lim
n→∞

valS(w(n))

VL(|w(n)|) =
θ − 1

θ2

∑

q∈Q

aq

∞∑

j=0

bq,jθ
−j

with the coefficients bq,j defined in (3.5). In particular, x is independent

of the sequence in LN converging to w. Moreover, it belongs to [1/θ, 1].

Conversely every element in [1/θ, 1] is the limit of a sequence of the form

(3.13) for some w ∈ Adh(L).

In this latter proposition, x is said to be the numerical value valS(w) of w.

In the same way, the infinite word w is said to be an S-representation of

the real number x.

Proposition 3.5.4 Let S be an ANS based on a language satisfying Hy-

pothesis 3.5.2. The map valS : Adh(L) → [1/θ, 1] is increasing and uni-

formly continuous.
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Some elements in [1/θ, 1] may have more than one S-representation in

Adh(L) and possibly infinitely many. This problem will be discussed in the

next subsection.

Recall that each Pisot number β defines a unique positional

and linear Bertrand numeration system Uβ = (Un)n∈N. See

(Bruyère and Hansel 1997) and recall Example 3.1.14. One can show

(Frougny and Solomyak 1996) that the language Lβ of all the normalised

representations computed by the greedy algorithm satisfies Hypothe-

sis 3.5.2, with θ = β. In (Lecomte and Rigo 2004), also it is shown that

the S-representations of the elements of [1/β, 1] in the ANS based upon Lβ

and the classical β-developments of these numbers coincide. In particular,

Adh(Lβ) is the set of these developments.

Example 3.5.5 Consider the classical Fibonacci system (for integers) or

the β-numeration system related to the Golden Ratio ϕ. The language of all

the representations of integers not starting with 0 is accepted by the DFA

depicted in Figure 3.10. Let us consider the ANS based on this language

and show that we get back the usual ϕ-development. If we set λ = 5+
√

5
10 ,

q0 q1 q2
1

0
0

1

Fig. 3.10. A Fibonacci ANS.

then an easy computation shows that Uq0(n) ∼ λϕn−1, Uq1(n) ∼ λϕn and

Uq2(n) ∼ λϕn+1. Setting Pq0 to the constant λ/ϕ and dividing Uq(n) by

Pq0 ϕ
n, we get aq0 = 1, aq1 = ϕ and aq2 = ϕ2. For any infinite word

w0w1 · · · ∈ Adh(L), the formula of Proposition 3.5.3 becomes

ϕ− 1

ϕ2

∞∑

j=0

ϕ−j + (ϕ− 1)

∞∑

j=0

bq2,jϕ
−j = ϕ−1 +

∑

j≥2

wj ϕ
−j−1

because for all j ≥ 0 we have bq0,j = 1, bq1,j = 0, bq2,0 = 0 and for j > 0

bq2,j = wj . To obtain the last equality we used the fact that ϕ− 1 = ϕ−1.

3.5.2 The intervals Iu

Let us have a closer look at the approximations of the elements in [1/θ, 1]

by finite words. Let u be a word of length ` and denotes by Iu the set of

real numbers x ∈ [1/θ, 1] having an S-representation starting with u. If Iu

is non-empty, i.e., if u is a prefix of some element in Adh(L), then it is a
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closed interval. In particular, Iε = [1/θ, 1]. Moreover, if u is a prefix of v,

then Iu ⊃ Iv and if w = w0w1 · · · ∈ Adh(L) is an S-representation of x,

then x belongs to Iw0···w`−1
for all `.

The set I` of non-empty intervals Iu such that |u| = ` defines a covering

of [1/θ, 1] made of closed subintervals with disjoint interiors. Otherwise

stated, there exist k(`) and real numbers κ`
1 = 1/θ ≤ · · · ≤ κ`

k(`)+1 = 1 such

that

I` =
{
[κ`

j , κ
`
j+1] | j = 1, ..., k(`)

}
.

Each κ`
j , 1 < j ≤ k(`), has at least two representations, as it is the upper

bound of some Iu and the lower bound of some Iv . It may well occur that

Adh(L) contains infinitely many words having prefix u although Iu contains

exactly one element, i.e., κ`
j = κ`

j+1 for some j. This one has then infinitely

many representations. Obviously, vanishing constants ap are of no use to

compute valS(w) and this causes that phenomenon, see Proposition 3.5.3.

It follows easily from Hypothesis 3.5.2 that if aq = 0 and p = q.u for some

word u, then ap = 0. Thanks to Proposition 3.5.3, we may delete from A
the states q such that aq = 0 and the corresponding edges without changing

the representations of real numbers, up to the fact that we replace A and

L by the simplified automaton and its language. Now, a real number in

(1/θ, 1) has exactly one representation if it is not the endpoint of some Iu

and exactly two representations otherwise.

Proposition 3.5.6 Let S be an ANS based on a language satisfying Hy-

pothesis 3.5.2 and let M ∈ NQ×Q be the adjacency matrix of A. For all

states p, we have

ap =
1

θ

∑

q∈Q

Mpqaq .

If u is a prefix of length ` of some element of Adh(L), then

Iu =




1

θ
+
θ − 1

θ`+1

∑

|t|=`

t<u

aq0.t,
1

θ
+
θ − 1

θ`+1

∑

|t|=`

t≤u

aq0.t


 .

In particular, θ and the numbers κ`
j are algebraic.

3.5.3 A dynamical point of view

In order to understand the structure of the set of intervals Iu, it is useful, say,

to normalise them in some way. This will allow us to design an algorithm

to compute representations of real numbers in [1/θ, 1] and to study the set
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of these which have an eventually periodic expansion. To that end, for any

interval I = [s, t], s < t, we use the increasing bijection

fI : I → [0, 1], x 7→ x− s
t− s

and we say that fI(x) is the relative position of x ∈ I (inside I). More

generally, the relative position of a subset E of I inside I will be fI(E).

Proposition 3.5.7 Let u and v be two words such that q0.u = q0.v. For

each a ∈ A, Iua 6= ∅ if, and only if, Iva 6= ∅. Moreover, if Iua 6= ∅, then the

relative positions of Iua inside Iu is equal to that of Iva inside Iv.

The above proposition is a key point in our study as it tells that the interval

Iu only depends upon the states q0.u, and not specifically upon u. We

use it to construct a dynamical system (Q × [0, 1], T ) which encodes the

relationship between the sets I`.

Let q be any given state of A. As the latter is accessible, q = q0.u for

some u of length say `. Then

Iu = [κ`+1
i , κ`+1

j ]

for some i < j and we get a partition

[0, 1] = [κ′i, κ
′
i+1) ∪ · · · ∪ [κ′r, κ

′
r+1) ∪ · · · ∪ [κ′j−1, κ

′
j ]

where, for simplicity, κ′r denotes the relative position of κ`+1
r inside Iu.

Of course, the elements of that partition are nothing but the non-empty

intervals among the Iua, a ∈ A. We let Rq,a denote the relative position of

such an Iua inside Iu and we define the function T by

T : Q× [0, 1]→ Q× [0, 1], (q, x) 7→ (q.a, fRq,a
(x))

where a is the unique letter such that x ∈ Rq,a.

The following algorithm 3.3 computes prefixes of the representation of a

real number x ∈ [1/θ, 1] by applying iteratively T to the initial data (q0, x).

The length ` of the prefixes is determined by some halting condition.

Example 3.5.8 Let us continue Example 3.5.5. Clearly, the state q0 occurs

only once and a representation always starts with 1. From q1, one can only

reach q2 reading 0. So a discussion has to be made only for state q2. The

interval I10 = splits into I100 and I101. The relative position of ϕ−1 + ϕ−3

inside [ϕ−1, 1] is ϕ−1. So we get the partition [0, ϕ−1)∪ [ϕ−1, 1]. A scheme

of application of Algorithm 3.3 is given in Figure 3.11.
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INPUT : x ∈ [1/θ, 1]
q ← q0
u← ε
I ← Iε

y ← fI(x)
REPEAT

DETERMINE a ∈ A such that y ∈ Rq,a

q ← q.a
u← CONCATENATE(u, a)
I ← Rq,a

y ← fI(x)
UNTIL |u| = `

Table 3.3. An algorithm computing a prefix of length ` of an

S-representation of the real x.

PSfrag replacements

q1

q1

q2

q200 11

ϕ−1

Fig. 3.11. The map T restricted to {q1, q2} × [0, 1].

3.5.4 Real numbers with eventually periodic representations

In the k-ary numeration system, the set of real numbers having an even-

tually periodic representations is Q. In particular, it is dense in R and

has strong algebraic properties (it is a field). It is of course tempting to

investigate the properties of the set of eventually periodic words belonging

to Adh(L). This is a hard problem and only a few results are known up to

now in that direction.

We begin with some interesting facts. For any set of (infinite) words

X , we let eper(X) denote the set of eventually periodic elements in X , by

per(X) the set of their periods and by preper(X) the set of their preperiods,
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i.e., if uvω belongs to eper(X), then v belongs to per(X) and u belongs to

preper(X).

Proposition 3.5.9 The sets per(Adh(L)) and preper(Adh(L)) are regular.

Moreover, eper(Adh(L)) is dense in Adh(L).

The real numbers having an eventually periodic representation can be

characterised in terms of T .

Theorem 3.5.10 A number x ∈ [1/θ, 1] has an eventually periodic repre-

sentation if, and only if, there exists r < s such that

T r(q0, x) = T s(q0, x).

In particular, each number κ`
i has an eventually periodic representation.

Let us explain why κ`
i has an eventually periodic representation. There is

a word m such that Im = [κ`
i , κ

`
i+1]. The representation of κ`

i given by

Algorithm 3.3 starts with m. In other words, T `(q0, κ
`
i) = (q0.m, 0). But

then, clearly, for r > `, T r(q0, κ
`
i) is of the form (q, 0) for some q. As there

are finitely many states, it follows that T r(q0, κ
`
i) = T s(q0, κ

`
i) for some

r < s.

As for the algebraic properties of the set of numbers having an eventu-

ally periodic representation, we have the following result similar to the one

given independently in (Bertrand 1977), (Schmidt 1980a) (also see Theo-

rem 2.3.20 and Section 2.3.2.1).

Theorem 3.5.11 (Rigo and Steiner 2005) Let S be an ANS based on

a language satisfying Hypothesis 3.5.2. If the corresponding real number θ

is a Pisot number, then

valS(eper(Adh(L))) = Q(θ) ∩ [1/θ, 1]

but if θ is neither a Pisot number nor a Salem number, then

Q(θ) ∩ [1/θ, 1] * valS(eper(Adh(L))) .

3.6 Exercises and open problems

Exercise 3.1 (Charlier 2009) Consider the sequence U = (Un)n≥0 given

by Ui = i+ 1 for i = 0, 1, 2, 3 and Un = 2Un−1 for all n ≥ 4. Show that N
is U -recognisable. Show that for all k ≥ 1, there exist no ak−1, . . . , a0 ∈ C
with a0 6= 0 such that, for all n ≥ 0,

Un+k = ak−1Un+k−1 + · · ·+ a0Un.
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In the terminology of (Berstel and Reutenauer 1988), U does not satisfy

any strict linear recurrence relation. Hint: a0 6= 0 is invertible.

Exercise 3.2 Give a proof of (3.4) given in page 134 using Lemma 3.2.2.

Exercise 3.3 Consider the two abstract numeration systems based on a∗b∗

obtained by changing the ordering on the alphabet, S = (a∗b∗, {a, b}, a < b)

and R = (a∗b∗, {a, b}, b < a). Study the function fS,R : N2 → N2, (i, j) 7→
(x, y) such that repR(valS(aibj)) = axby.

Exercise 3.4 Show that, in general, changing the ordering of the alphabet

is not a recognisability-preserving operation. A counter-example is given in

(Lecomte and Rigo 2001).

Exercise 3.5 Find a closed formula for the expression of valS(aibjck) for

the ANS S = (a∗b∗c∗, {a, b, c}, a < b < c}. In this system which set of

integers is represented respectively by a∗, b∗ and c∗?

Exercise 3.6 Generalise ANS on a∗b∗ or a∗b∗c∗ by considering the ANS

S = (a∗1 · · · a∗t , {a1, . . . , at}, a1 < · · · < at) where a1, . . . , at are t distinct

letters. Show that this system is equivalent to the so-called binomial nu-

meration system defined as follows, see (Fraenkel 1985). Any integer n ≥ 0

can be uniquely written as

n =

(
zt

t

)
+

(
zt−1

t− 1

)
+ · · ·+

(
z1
1

)

with zt > zt−1 > · · · > z1 ≥ 0. Indeed, show that we have

valS(an1
1 · · ·ant

t ) =

t∑

i=1

(
ni + · · ·+ nt + t− i

t− i+ 1

)
.

For details see (Charlier, Rigo, and Steiner 2008). Also see connection with

(Lew, Morales, and Sánchez-Flores 1996).

Exercise 3.7 Consider the ANS given in Example 3.1.15. This system

seems to be related to the Fibonacci numeration system. Is it possible

to assign weights v(a) and v(b) to a and b to recover the usual Fibonacci

system, i.e., such that, for all w` · · ·w0 ∈ L, valS(w) =
∑`

k=0 v(wi)Fi?

Exercise 3.8 Let S = (a∗b∗, {a, b}, a < b}. Show that the formal series∑
w∈L valS(w)w is rational in the sense of (Berstel and Reutenauer 1988)

(Also see the definition given in Section 2.6.1). In particular, we get the
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linear representation (λ, µ, γ) where µ : {a, b}∗ → N3×3 is a morphism of

monoids defined by

µ(a) =




1 1 0

0 1 1

0 0 1


 , µ(b) =




1 1 1

0 1 1

0 0 1


 ,

λ =
(
1 0 0

)
and γ =

(
0 1 1

)
such that valS(w) = λµ(w) tγ.

This result holds for any ANS, see (Rigo 2002) and independently

(Choffrut and Goldwurm 1995) where valS is called ranking.

Exercise 3.9 Consider the ANS S = ({a, b}∗ \ a∗, {a, b}, a < b) and the

set Y such that repS(Y ) = a∗b. Is the set valS(2 repS(Y )) = Z still recog-

nisable? We suggest to write a small computer program to list the first 100

elements in repS(Z).

Exercise 3.10 Let L ⊂ A∗ be a cofinite language not equal to A∗. Study

the preservation of S-recognisability after multiplication by a constant for

ANS based on L. Notice that if L = A∗, then ANS defined on L is equivalent

to the usual integer base (CardA)-ary system.

Exercise 3.11 (Open problem) For the usual k-ary numeration system,

a logical characterisation of the k-recognisable sets by first order logical

formula from 〈N,+, Vk〉 is well known. Could one imagine a logical charac-

terisation of the S-recognisable sets in a suitable logical structure?

Exercise 3.12 (Open problem) Assume that P ∈ Q[X ] is such that

P (N) ⊆ N. If P (N) is S-recognisable for S = (L,A,<), what informa-

tion on L can be obtained? For instance, is L polynomial?

Exercise 3.13 (Open problem) Let S be an ANS. Find necessary

and/or sufficient conditions for the existence of an increasing sequence

(Un)n≥0 of integers such that U0 = 1 and a map v : A → N such that

valS(w) =
∑`

i=0 v(wi)Ui for all w = w` · · ·w0 ∈ L.

Exercise 3.14 (Open problem) This problem is also discussed in the

bibliographic notes and in Remark 3.4.25. Does there exist an algorithm,

given an ANS S = (L,A,<) and any S-recognisable set X of integers given

by a DFA, which can be used to decide whether or not X is eventually

periodic?

Exercise 3.15 (Open problem) Obtain a general Cobham-like theorem

for ANS. See in particular, Remark 3.4.23.
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3.7 Notes

Properties of k-recognisable sets are well-known. For a survey, see for

instance (Bruyère, Hansel, Michaux, et al. 1994). This paper explains in

particular the logical characterisation of the k-recognisable sets in terms

of first order logical formulas in an extension of the Presburger arithmetic

〈N,+〉 with a valuation Vk . Most of the characterisations encountered for

k-ary systems can be extended to the Pisot systems of Example 3.1.14. See

(Bruyère and Hansel 1997) which partially relies on (Frougny 1992) about

the normalisation function computable by a finite automaton. Also it is

probably worth to have a look at (Shallit 1994) which has been cited many

times in this chapter.

Slender languages have been considered in several contexts and partic-

ularly in some decision problems. See (Honkala 1997), (Honkala 1998),

(Honkala 2001b). For a study of morphisms and/or languages with poly-

nomial growth, also see (Mauduit 1986).

It is interesting to note that Lemma 3.3.5 about the regularity of the set

of minimal words of each length in a regular language has been extended to

context-free languages. If L is context-free, then minlg (L) is again context-

free (Berstel and Boasson 1997). It is also shown that if Pref(Adh(L)) = L,

then minlg (L) is regular.

State complexity issues about decimations treated in Theorem 3.3.2

are considered in (Krieger, Miller, Rampersad, et al. 2009). In this paper,

the authors moreover provide an example of an ANS G based on a non-

regular context-free language such that repG(2N) is not context-free. In

(Berstel, Boasson, Carton, et al. 2006), some operations preserving regular

languages are discussed.

The idea of Definition 3.4.10 associating with a morphism some canonical

automaton already appears in the seminal paper (Cobham 1972). Of course,

when considering a uniform morphism, the resulting automaton is complete.

More on extension of S-automaticity to the multidimensional case can

be found in (Rigo and Maes 2002) and (Nicolay and Rigo 2007). Fol-

lowing the work of A. Fraenkel, applications of ANS and in partic-

ular the use of Corollary 3.4.14, to combinatorial game theory ap-

pear in (Duchêne and Rigo 2008a) and (Duchêne and Rigo 2008b). See

(Duchêne, Fraenkel, Nowakowski, et al. 2009) for an application of shape-

symmetric bidimensional morphisms to Wythoff’s game. In this paper, it is

proved that the set of losing positions defines a shape-symmetric morphic

array.

Consider the following decision problem. Let S = (L,A,<) be an

ANS. For any S-recognisable set of integers given by a DFA, decide
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whether or not this set is eventually periodic. As explained in Re-

mark 3.4.25 this problem can also be stated in terms of HD0L systems.

The purely substitutive case is settled positively in (Harju and Linna 1986),

(Pansiot 1986). For k-automatic sequences, the problem is solved in

(Honkala 1986). See (Leroux 2005) where a polynomial time general pro-

cedure for d-dimensional subsets of 〈Z,+〉 is given. An elegant and

simple approach based on the construction of an NFA can be found

in (Allouche, Rampersad, and Shallit 2009). In (Honkala and Rigo 2004),

some special cases expressed in terms of ANS are treated. Recently,

(Bell, Charlier, Fraenkel, et al. 2009) covers a large class of ANS for which

the problem is decidable, also see (Charlier 2009). The general problem is

still open.

Several other topics related to ANS and in particular to the representation

of real numbers are the following ones. For most of the situations described

below some extra assumptions on the language are often required like hav-

ing a DFA with a dominating eigenvalue. The introduction in the sense

of (Grabner, Liardet, and Tichy 1995) of the odometer for ANS is made in

(Berthé and Rigo 2007b). The idea is to define in a proper way a map

sending an infinite word onto its “successor”, also see Section 6.5. As an

example, for positional numeration systems like the Fibonacci numeration

system, this map sends 010100(10)ω onto 0000(10)ω and one has to study

carry propagation. The definition of the odometer for ANS acts on a pair

made of an infinite word and the infinite sequence of states corresponding to

the path followed in the automaton when reading this word. The idea is to

replace a non-maximal prefix of length ` read from some state q by the next

word of same length ` accepted from q. Continuing the Fibonacci example,

the successor of 1010 is 10000 which explains what we get above by taking

mirror images. Note that considering pairs of letters and states is equiv-

alent to considering local automata. Some tilings given in the framework

of ANS have been presented in (Berthé and Rigo 2007a), see connection

with Chapters 2 and 5. An analogue to the classical sum-of-digits function

(see Chapter 9) can be defined as follows. Consider a map f : A → R
to define a completely additive function, i.e., for all w = w1 · · ·w` ∈ A∗,
f(w) =

∑`
i=1 f(wi). The behaviour and distribution of the correspond-

ing summatory function
∑

w∈L f(w) is studied in (Grabner and Rigo 2003)

and (Grabner and Rigo 2007). Extensions of β-expansions and of the map

Tβ : x 7→ {βx}, see Section 2.3.2, is presented in (Rigo and Steiner 2005).

As in Lemma 3.2.2, it involves for ANS as many maps as states in the

minimal automaton of L.

The framework of Section 3.5 extends to a larger class a numeration

systems in (Charlier, Le Gonidec, and Rigo) including numeration systems
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based on a non-regular language such as the one coming from rational base

numeration systems (see Section 2.5).




